The following problem accompanies the book, Method of Weighted Residuals and Variational Principles, by Bruce A. Finlayson, a SIAM Classic reprinted in 2014. The original version was printed by Academic Press in 1972. See www.ChemEComp.com/MWR. Order the book from the Society of Industrial and Applied Mathematics, www.SIAM.org. The problems and solutions refer to equations and references in that book.

Problem 3. Solve the same problem as in Problem 2 but using the second order finite difference method. The error bounds are not applicable to this approximation, but compare the results with those in Problem 2. The problem is:

$$\frac{d^2y}{dx^2} + \lambda y = 0, y(0) = y(1) = 0$$

Part a. Evaluate the variational integral using

$$\frac{dy}{dx}\bigg|_{i} = \frac{y_{i+1} - y_{i}}{\Delta x}$$

Differentiate the variational integral with respect to y_j .

Part b. Solve the equations in part a to get the approximate eigenvalues. Are they upper bounds? Compare the errors to those in Problem 2.