The following problem accompanies the book, Method of Weighted Residuals and
Variational Principles, by Bruce A. Finlayson, a SIAM Classic reprinted in 2014. The original
version was printed by Academic Press in 1972. See www.ChemEComp.com/MWR. Order
the book from the Society of Industrial and Applied Mathematics, www.SIAM.org. The
problems and solutions refer to equations and references in that book.

Problem 6, Part a. Take the first variation:
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Integrate by parts to get
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Then using the divergence theorem we get
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Since du = 0 on the boundary, the correct Euler equation is derived.

Taking the second variation gives
2 2
51 =f _2(65u)(85u)_2(66u)(aéu)_z(a_u)(aé u)_z(G_u)(a (5u)+252u
! dx J\ ox ay J\ dy dx )\ ox dy J\ dy
The last three terms are treated as before, giving zero for the exact solution, and leaving
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This is always negative, so the variational principle is a maximum principle and the
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variational integral is a lower bound on the integral evaluated with the exact solution, Eq.

(7.65).



Part b. The trial function is
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and the x and y derivatives are
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Note that some terms drop out for certain i and j. If you are programming the solution, you
need to omit the terms with negative powers. The variational method requires taking

derivatives with respect to the parameters a.
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First use only one term, a. The integrals are the square of the terms above.
The three integrals take the values: -a2¢0.08889, -a?¢0.02222, and 2a+0.05556. Thus, the
value of a is 0.5. The value of the variational integral is

2
I= —(%) (0.08889 + .02222) + 2(%)0.05556 =0.02778

If one integrates the variational integral by parts following the same steps used when
finding the first variation, we get
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The first term is zero for the exact solution, and the boundary term is zero because of the
boundary conditions. Thus, the integral is the value of the flow rate [note the nomenclature
error is Eq. (7.65)]. To get the flow rate (or I) over the entire domain, multiply by 4.

flow rate = f udA, average velocity <u> = % f udA = %
A A

The formula for fRe is Eq. (4.11).
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The parameter d ‘ is the dimension used to make the equations dimensionless (here = 1),
the d is the 4 x the hydraulic radius = 4A/C (4/3), and the A and C are the cross sectional
area and circumference, here 2 and 6. Thus,
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Check that the average velocity is less than the true value. The exact value is 0.05717, so
the approximate value is about 3% low. The exact value of fRe is 15.55, so the error is
about 3%, of course. Thus, the first term in the approximation gives excellent results. The
exact values are listed in Table 4.2, except that they are there for an aspect ratio of 0.4 and
0.6, but not 0.5. Doing a linear interpolation gives 15.65. The more precise value is
determined in part c.

Calculations for higher values of nx and ny are given in the table as computed by the
MATLAB program problem_6.m. Note that the value of I goes up as an additional degree of
freedom is introduced (due to the maximum principle). Of course, when one degree of
freedom is reduced and another increased that doesn’t necessarily happen (see nx =2 and
ny =4 and nx =3 and ny = 3). The value of I(u) increases as the approximation becomes
better. It is a lower bound to the exact value of the variational integral. The estimated error
is found using the last value for nx =6 and ny =12.

nx ny Integral of 2u on [ on quarter Est. |Error| on
quarter domain domain total domain

1 1 0.055555 0.02777778 8.1e-4

1 2 0.057060 0.02853022 5.5e-5

2 2 0.057141 0.02857047 1.5e-5

2 3 0.057168 0.02858377 1.4e-6

2 4 0.057169 0.02858434 8.8e-7

3 3 0.057168 0.02854239 9.7e-7

3 4 0.057170 0.02858505 1.6e-7

3 5 0.057170 0.02858514 7.2e-8

3 6 0.057170 0.02858515 6.3e-8

6 12 0.057170 0.02858521 -




Part c. The program Comsol Multiphysics was used to solve the partial differential
equation with the finite element method. One option is Poisson’s equation (in the
Mathematics section). Define a rectangle going from x = 0 to 0.5, y = 0 to 1. The default
values for Poisson’s equation are appropriate here, namely ¢ = 1, f = 1. Use Dirichlet
boundary conditions on the top and right-side boundary, with u = 0. The boundary
conditions on the left and bottom are normal derivative zero (zero flux). Choose the
discretization as Hermite cubic polynomials, which are continuous and have continuous
first derivatives. The results are shown in the table.

Mesh description dof <u> I(u) (total u(0,0)
domain)
Extremely coarse 86 .057163 114326 .113862
Extra coarse 122 .057169 114337 113870
Coarser 254 .057170 114340 113871
Coarse 368 .057170 114341 113872
Normal 857 .057170 114341 113872

While this does not provide error bounds (see the discussion on page 360), the rate of
convergence is useful. Examine Schultz (1969c) to see if the theorems there can provide an
error bounds. A plot of the solution is shown below, along with a plot of the first
approximation derived in part b. The first approximation is slightly in error since the
formula in the y direction only has one term and it is twice as long as the distance in the x
direction.
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Left: Comsol solution for extremely coarse mesh (86 dof) and right: approximate solution
with one unknown (part b)




It is of interest to compare the estimated errors in part b with those in part c. The figures
shows that the global polynomial approximation reduces the error with only a few terms,
while the finite element method using cubic Hermit polynomials requires many more
terms to achieve the same accuracy.
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