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CHAPTER 2.  EQUATIONS OF STATE USING PYTHON 
 
SOLVING EQUATIONS OF STATE (SINGLE EQUATION IN ONE UNKNOWN) 
 
 Nonlinear algebraic equations can be solved using Python, too.  First, you have to define 
the problem to solve by defining a function; then, you check it; finally, you issue a command to 
solve it. See Appendix F for additional details. 
 
Step 1  Import the fsolve program from SciPy and define the function (note the indentation after 
the declaration def).  
 
 from scipy . optimize import fsolve 
 def f(x): 
        return x ** 2 - 2 * x - 8 
 
Step 2  Check the function.  Issue the command: print(f(1.1)) to get the result: –8.99. You can 
easily calculate Eq. (2.8) to see that for x = 1.1, the function value is –8.99.  Now you know the 
function f is correct.  Note that we used a value for x that meant that every term in the function 
was important. If we had used x = 1e-5, then the x*x term would be negligible unless we 
computed it to ten significant figures; hence we wouldn’t have checked the entire function. The 
value x =1.0 is not a good choice either, since an incorrect function  x-2*x-8 would return the 
same value as x*x-2*x-8, hence the error would not be discovered. This is a trivial example, and 
it is more important for more complicated problems. 
 
Step 3  To find the value of x that makes f(x) = 0 in Python, use the ‘fsolve’ function.  In the 
command window, issue the following command. 
 
 x = fsolve (f, 0) # one root is at x = -2.0 
 print (' The root is %5.3f.' % x)   
 
This command solves the following problem for x:  starting from an initial guess of 0.  
The answer is -2.0. You can test the result by saying: 
 
         print(f(x))) 
 
which gives [ -2.55795385e-13]. Sometimes the function will have more than one solution, and 
that can be determined only by using the command with a different initial guess.     
 To summarize the steps, step 1 defined the problem you wished to solve and evaluated it 
for some x, step 2 checked your programming, and step 3 instructed Python to solve the problem.  
It is tempting to skip the second step – checking your programming – but remember: if the 
programming is wrong, you will solve the wrong problem. The last command gives a further 
check that the zero of the function has been found. 
 When examining the command x = fsolve (f, x0), the f defines which problem to solve, 
the x0 is your best guess of the solution and fsolve tells Python  to vary x, starting from x0 until 
the f is zero.  
 In all the commands, the f can be replaced by other things, say prob1.   The answer can 

€ 

f (x) = 0
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also be put into another variable name: z = x.  
 
 z = x    
 print(z) 
 
In the last example the result is put into the variable z.  The options vector allows you to set 
certain quantities, like the tolerance.  Add to the fsolve command: xtol=1.5e-8. For the example 
used above, you can find the other root by running the program with x0 = 3. Multiple roots can 
be found only if you search for them starting with different guesses.  
 
Example of a Chemical Engineering Problem Solved Using Python   
 
 Find the specific volume of n-butane at 500 ºK and 18 atm using the Redlich-Kwong 
equation of state.  
  
Step 1  First, you need to define the function that will calculate the f(x), here specvol(v), given 
the temperature, pressure, and thermodynamic properties. The file is shown below.   
 
 def specvol(v): 
  # in K, atm, l/gmol 
  # for n-butane 
  Tc = 425.2 
  pc = 37.5 
  T = 393.3 
  p = 16.6 
  R = 0.08206 
  aRK = 0.42748 * (R * Tc) ** 2 / pc 
  aRK = aRK * (Tc / T) ** 0.5 
  bRK = 0.08664 * (R * Tc / pc) 
  return p * v ** 3 - R * T * v ** 2 + (aRK - p * bRK ** 2 - R * T * bRK) * v - aRK * bRK 
 
This function, called specvol, defines the problem you wish to solve.   
 
Step 2  To test the function specvol you issue the command: 
 
 print(specvol(2)) 
   
and get 25.98, which is correct. The specvol function causes Python to compute the value of the 
function specvol when v = 2.  You should check these results line by line, especially the 
calculation of aRK, bRK, and y (just copy the code except for the return statement and calculate 
aRK and bRK with a calculator..   Alternatively, you can use the spreadsheet you developed, put 
in v = 1.506 and see what f(v) is; it should be the same as in MATLAB since the cubic function 
and parameters are the same. 
 
Step 3  Next you issue the command: 
 
 v = fsolve(specvol,2) 
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 print(v) 
 
and get 1.5064. In specvol the 2 is an initial guess of the answer.  To check, you might evaluate 
the function to find how close to zero f(v) is.   
 
 print (specvol(v)) 
 
and get 1.8e-15. Of course you expect this to be zero (or very close to zero) because you expect 
Python to work properly.  If Python can’t find a solution, it will tell you. If you use an initial 
guess of 0.2, you might get the specific volume of the liquid rather than the gas. Python gives 
0.18147. 
 
Another Example of a Chemical Engineering Problem Solved Using Python   
 
 Next rearrange the Python code to compute the compressibility factor for a number of 
pressure values.  The compressibility factor is defined in Eq. (2.10). 
 

   (2.10) 

 
For low pressures, where the gas is ideal, the compressibility factor will be close to 1.0.  As the 
pressure increases, it will change.  Thus, the results will indicate the pressure region where the 
ideal gas is no longer a good assumption. The following code solves for the Redlich-Kwong, 
Redlich-Kwong-Soave, and Peng-Robinson equations of state and plots the compressibility 
factor versus pressure as in Figure 2.3. 
 
from scipy . optimize import fsolve 
import numpy as np 
import pylab as plt 
 
# n-butane Redlich-Kwong, Eq. (2.5) 
def specvolRK(v, p): 
    # in K, atm, l/gmol 
    # for n-butane 
    Tc = 425.2 
    pc = 37.5 
    T = 500 
    R = 0.08206 
    aRK = 0.42748 * (R * Tc) ** 2 / pc 
    aRK = aRK * (Tc / T) ** 0.5 
    bRK = 0.08664 * (R * Tc / pc) 
    return p * v ** 3 - R * T * v ** 2 + (aRK - p * bRK ** 2 - R * T * bRK) * v - aRK * bRK 
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# n-butane Redlich-Kwong-Soave, Eq. (2.5) 
def specvolRKS(v, p): 
    # in K, atm, l/gmol 
    # for n-butane 
    Tc = 425.2 
    pc = 37.5 
    T = 500 
    R = 0.08206 
    acentric = 0.193 
    mRKS = 0.480 + (1.574 - 0.176*acentric)*acentric 
    alphaRKS = (1 + mRKS *(1-(T/Tc)**0.5)) ** 2 
    aRKS = 0.42748 * alphaRKS * (R * Tc) ** 2 / pc 
    bRKS = 0.08664 * (R * Tc / pc) 
    return p * v ** 3 - R * T * v ** 2 + (aRKS - p * bRKS ** 2 - R * T * bRKS) * v - aRKS * bRKS 
 
# n-butane Peng-Robinson, Eq. (2.6) 
def specvolPR(v, p): 
    # in K, atm, l/gmol 
    # for n-butane 
    Tc = 425.2 
    pc = 37.5 
    T = 500 
    R = 0.08206 
    acentric = 0.193 
    mPR = 0.37363 + (1.54226 - 0.26992*acentric)*acentric 
    alphaPR = (1 + mPR *(1-(T/Tc)**0.5)) ** 2 
    aPR = 0.45724 * alphaPR * (R * Tc) ** 2 / pc 
    bPR = 0.07780 * (R * Tc / pc) 
    return p*v**3+(bPR*p - R*T)*v**2+(aPR- *p*bPR**2- *R*T*bPR)*v +  
 (p*bPR**3 + R*T*bPR**2-aPR*bPR) 
 
T = 500 
R = 0.08206 
pressure = np.arange(1, 27, 5) 
print(pressure) 
print(pressure[0]) 
print(pressure[5]) 
zcompRK = np.zeros(6,dtype=float) 
zcompRKS = np.zeros(6,dtype=float) 
zcompPR = np.zeros(6,dtype=float) 
print(zcompRK) 
 
for i in range(0, 6, 1): 
    p = pressure[i] 
    guess = R*T/p 
    v = fsolve(specvolRK, guess, p) 
    z = p * v / (R * T) 
    zcompRK[i] = z 
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    v = fsolve(specvolRKS,v,p) 
    z = p * v / (R * T) 
    zcompRKS[i] = z 
    v = fsolve(specvolPR,v,p) 
    z = p * v / (R * T) 
    zcompPR[i] = z 
 
print(zcompRK) 
print(zcompRKS) 
print(zcompPR) 
plt . plot (pressure,zcompRK,'o-g',label='Redlich-Kwong') 
plt . plot (pressure,zcompRKS,'x-b',label='Redlich-Kwong-Soave') 
plt . plot (pressure,zcompPR,'s-r',label='Peng-Robinson') 
plt . legend(loc='best)') 
plt . xlabel('Pressure (atm)') 
plt . ylabel('Z') 
plt . title ('n-Butane') 
plt . show() 

 
 

Figure 2.3. Compressibility factor for n-butane, using Python 
 

The first three commands bring in the needed routines – fsolve, numpy, and pylab (for plotting. 
Then there are three definitions of functions that define the equation governing the specific 
volume, Eq. (2.5) and (2.6). The main program sets the temperature, provides a vector of 6 
pressures, equidistant from 1 to 27; pressure = [1, 6, 11, 16, 21, 26]. The index goes from 0 to 
5. The vectors of compressibilites are also set with 6 values for each equation of state, starting 
with 0, to be filled as the calculations proceed.  Then a loop calculation is made for i from 0 to 5. 
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For each pressure in turn, the guess for the Redlich-Kwong equation of state is the result from 
the ideal gas law. The result from the Redlich-Kwong equation of state is used for the guess 
when solving the Redlich-Kwong-Soave equation of state, and that solution is used as the gues 
for the Peng-Robinson equation of state. For each i, after the compressibility is found it is put in 
a vector for that equation of state. Finally the results are plotted, with three curves on one plot. 
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CHAPTER 3.  VAPOR-LIQUID EQUILIBRIA USING PYTHON 
 

Example using Python 
 
 Before working this example, explore Appendix F so that you have all the program parts 
needed here. 
 
We want to solve Eq. (3.9) using Python, given the Ki and zi. 
 

         (3.9) 

 
This is a nonlinear equation to solve for .  Thus, you can apply here the same methods used 
with Python in Chapter 2.  Once the value of  is known, you can calculate the value of the 
liquid compositions, {xi}, and vapor compositions, {yi}, using Eq. (3.8) and (3.1).  The mole 
balance is then complete. 
 

         (3.8) 

 
          (3.1) 

 
The program to do this is shown here. 
 

# vapor-liquid equilibrium  
# this is necessary to get fsolve, which solves the non-linear equations 
from scipy . optimize import fsolve 
 
# function definition, Eq. (3.9) 
def vpequil(v): 
    z = [0.0, 0.1, 0.3, 0.4, 0.2]   #note the first value in the matrix is not used 
    K = [0.0, 6.8, 2.2, 0.8, 0.052] 
    # print(z): z and K can be printed when checking the program 
    # print(K) 
    sum1 = 0. 
    for i in range(1,5):            # note: in python the range stops one before the last value 
           # see the discussionin Appendix F on vectors 
        num = (K[i] - 1.0) * z[i] 
        denom = 1.0 + (K[i] - 1.0) * v 
        sum1 = sum1 + num / denom 
        #print(num)  #these can be printed when checking the function 
        #print(denom) 
        #print(sum1) 
    return sum1 
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# check the function 
print ('For testing %10.6f ' % vpequil(0.2)) 
 
 
# find the solution 
v = fsolve (vpequil, 0.2) 
print (v) 
 
# find the composition 
z = [0.0, 0.1, 0.3, 0.4, 0.2] 
K = [0.0, 6.8, 2.2, 0.8, 0.052] 
x = np.zeros(5,dtype=float)       # these are necessary to introduce vectors 
y = np.zeros(5,dtype=float) 
for i in range(1,5): # remember that the indices go from 0 to 4 
  # we skip the first one, and the loop goes to one below 5, or 4 
    x[i] = z[i]/(1.0 + (K[i]-1.0)*v) 
    y[i] = K[i]*x[i] 
 
print ('The liquid mole fractions are') 
print (x) 
print ('\nThe vapor mole fractions are') 
print (y) 
 

 
The output is 

 
For testing   0.241549  
The vapor fraction is   0.425838 
The liquid mole fractions are 
[ 0.          0.0288196   0.19854325  0.43723857  0.33539858] 
 
The vapor mole fractions are 
[ 0.          0.19597326  0.43679516  0.34979086  0.01744073] 
 
These agree with the results from Excel and MATLAB. 
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CHAPTER 4.  CHEMICAL REACTION EQUILIBRIA USING PYTHON 
 

Solution of Tables 4.2 and 4.3 Using Python 
 
 To solve Eq. (4.15) using Python, you define a function that will calculate the right-hand 
side and use fsolve to find the value of x that makes it zero.  
 

 

€ 

f (x) =148.4 − x 2

(1− x)2
        (4.15) 

 
The program that does this is shown here and explained step by step below. 
 
 from scipy . optimize import fsolve 
 def equil_eq(x): 
          return 148.4 - x*x/(1.0-x)**2 
 x = fsolve (equil_eq, 0.5) 
 print ('The root x is %10.5f' % x) 
 
Step 1  Import fsolve from scipy.optimize.  
 
 from scipy . optimize import fsolve 
 
Step 2  Construct a function evaluates the function, given x.  The name is equil_eq and it is listed 
below.   
 
 def equil_eq(x): 
       return 148.4 - x*x/(1.0-x)**2 
 
Step 3  Call fsolve to find the value of x that makes the function equil_eq zero, using 0.5 as the 
initial guess. 
 
 x = fsolve (equil_eq, 0.5) 
 
Step 4  Print the result. 
 
 print ('The root x is %10.5f' % x) 
 
The result is: 
 
 The root x is    0.92414 
 
 The program is easily changed to allow different inlet mole fractions, rather than pure 
carbon monoxide and water, i.e. Table 4.3.  The data is entered in the function as a vector param 
that is set outside the function. 
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def equil_eq(x,param): 
    COin = param[1] 
    H2Oin = param[2] 
    CO2in = param[3] 
    H2in = param[4] 
    Kequil = 148.4 
    CO = COin - x 
    H2O = H2Oin - x 
    CO2 = CO2in + x 
    H2 = H2in + x 
    return Kequil-CO2*H2/(CO*H2O) 
 
param = np.zeros(5,dtype=float) 
param[1] = 1. 
param[2] = 1.8 
param[3] = 0.3 
param[4] = 0.1 
x = fsolve (equil_eq, 0.9, param) 
 
print ('The root x is %10.5f' % x) 

 
The solution is the same as that found in Table 4.3. 
  
 The conversion x is    0.98836 
 
Some times the solution cannot be found and you must try again with a different initial guess. 
That was case here, and fsolve did not converge for an initial guess of 0.5. 
 
Multiple Equations, Few Unknowns Using Python 
 
 Suppose you want to solve the following two equations: 
  

 

€ 

10x  +  3y 2 = 3
x 2 −  exp(y)  =  2

    (4.16) 

 
These can be solved using the fsolve program. Since the exponential is used it must be imported 
from scipy, too. 
 

from scipy . optimize import fsolve 
from scipy import exp 
import numpy as np 
 
def prob2(p): 
    # vector components are transferred to the function 
    x = p[0] 
    y = p[1] 
    return 10*x + 3*y*y -3, x*x - exp(y) - 2 
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p = np.zeros(2,dtype=float) 
p[0] = 1.5 
p[1] = 2.5 
p = fsolve(prob2,p) 
 
print ('x =  %8.5f' % p[0]) 
print ('y =  %8.5f' % p[1]) 

 
The result is 
 

x = -1.44555 
y = -2.41216 

 
The vector p could also be defined by the following command. 
 

p = np.append(1.5, 2.5) 
 
The function can also be calculated with the final solution to verify that it is correct. 
 

x = p[0] 
y = p[1] 
z = 10*x + 3*y*y -3 
print('The function is %10.5e ' % z) 
z = x*x - exp(y) - 2 
print('                 %10.5e ' % z) 

 
The result is 
 

The function is -3.37508e-14  
                        4.31655e-13 
 

which is close to zero and indicates the solution is good. 



CHAPTER 8.  CHEMICAL REACTORS USING PYTHON 
 
USING PYTHON TO SOLVE ORDINARY DIFFERENTIAL EQUATIONS 
 
Simple Example 
 
 In Python, you define the problem by means of a function following the def command.  
You then tell Python to solve the differential equation. This process is illustrated using a single, 
simple differential equation: 
 

   (8.16) 

 
Integrate this equation from t = 0 to t = 1.  The exact solution can be found by quadrature and is 
 

    (8.17) 
 
The program to do this is: 
 

from scipy.integrate import odeint 
import matplotlib.pyplot as plt 
import numpy as np 
 
def f(y, t): 
# this is the rhs of the ODE to integrate , i.e. dy/dt=f(y,t) 
    return -10 * y 
 
y0 = 1 # initial value 
a = 0 # integration limits for t 
b = 1 
tspan = np. arange (a, b, 0.05) # values of t for which we require the solution y(t) 
 
y = odeint (f, y0 , tspan) # actual computation of y(t) 
 
# plot the solution 
plt . plot (tspan, y) 
plt . xlabel ('t'); plt . ylabel ('y(t)') 
plt . show () 
 
# print the solution 
print(tspan, y) 

 
The import commands are necessary to get the programs that will be used. Then the function is 
defined, f(y,t), which is the right-hand side of the differential equation. The time span is set and 
values of the solution are to be obtained at intervals of 0.05. The odeint is called to solve the 
differential equation, and it is then plotted, giving the same graph Figure 8.1. 

€ 

dy
dt

= −10y,  y(0) =1

y(t) = e 
− 10 t
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Passing Parameters 
 
 Still another way to introduce  into the function is to use it as a parameter in the calling 
argument.  Modify the function and the calling arguments as follows. The red parts are the lines 
that are changed. 
 

def rhs(y,t,krate): 
# this is the rhs of the ODE to integrate , i.e. dy/dt=f(y,t) 
    return - krate * y 
 
y0 = 1 # initial value 
a = 0 # integration limits for t 
b = 1 
tspan = np. arange (a, b, 0.05) # values of t for which we require the solution y(t) 
krate = 10.0 # set the rate constant 
y = odeint (rhs, y0 , tspan, args=(krate,)) # actual computation of y(t) 
# note how the krate has to be put into an args tuple 

 
The solution is the same as before. 
 
Example: Isothermal Plug Flow Reactor 

 
 The equations for all three species in the plug flow reactor are (p. 144) 
 

    (8.21) 

 
At the inlet  

  
   (8.22) 

 
and we take u = 0.5 m/s,  = 0.3 m3/kmol s,  and the total reactor length as z = 2.4 m.   

  
Step 1  The Python program requires a function that defines the right-hand side.  The input 
parameters to the function are the concentrations of all species.  The function also needs the 
velocity, u, and the rate constant, k.  The distance from the inlet, z, takes the place of time and is 
the independent variable. The code for the function follows. Note the fact that three values are 
returned, the right-hand sides of the three derivatives. 

 
def ydot(y, t): 
    # y(0) is CA, y(1) is CB, y(2) is CC 
    # k = 0.3 and u = 0.5 
    CA= y[0] 
    rate = 0.3*CA*CA 
    return (-2.*rate/0.5, +rate/0.5, 0.) 
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u dCA

dz
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dz
= +kCA

2 , u dCC

dz
= 0

€ 

CA (0) = 2 kmol/m3,CB (0) = 0,CC (0) = 2 kmol/m3

€ 

k



Using Python in Chapter 8 – Copyright, Bruce A. Finlayson, 2017 

 

15 

Step 2  You test this function by calling it with specific values for y to ensure that it is correct. 
 
y0 =  np.zeros(3,dtype=float) 
y0 [0] = 0.2  
y0 [1] = 0.3  
y0 [2] = 0.4  
a = 0. 
VR = 2.6 
tspan = np. arange (a, VR, 0.2) 
print(ydot(y0,tspan)) 

 
gives the same answer as with MATLAB (page 145): -0.048, 0.024, 0. This is a very important 
step, because this is where you add value.  Python will integrate whatever equations you give it, 
right or wrong, and only you can ensure that the program has solved the right equations. 

  
Step 3  Next, write the code that serves as the driver.  This code must (a) set any constants (here 
they are just put into the function rate1 for simplicity), (b) set the initial conditions and total 
reactor length, and (c) call the odeint solver.   
                     % run_rhs1.m 

y0 = np.zeros(3,dtype=float) 
y0[0] = 2.0 
y0[1] = 0.0 
y0[2] = 2.0 
a = 0. 
VR = 2.6 
tspan = np. arange (a, VR, 0.2) 
y = odeint(ydot,y0,tspan) 

             
Step 4  The solution is then printed and plotted. The plot is the same as Figure 8.3.  

 
# print the solution 
print(tspan, y) 
print(y[:,0]) 
 
# plot the solution 
plt . plot(tspan, y[:,0],'*-') 
plt . plot(tspan, y[:,1],'+-') 
plt . plot(tspan, y[:,2],'x-') 
plt . xlabel ('length (m)') 
plt . ylabel ('concentrations (kgmol/m^3)') 
plt .show() 
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Example: Nonisothermal Plug Flow Reactor 
 
 Consider the model of a simple reactor oxidizing SO2 to form SO3 treated on pp. 146-9. 
The equations are   
 

    (8.24) 

 
where the reaction rate is 
 

    (8.25) 

 
   (8.26) 
 
with the parameters: . The variable X is the concentration of 
SO2 divided by the inlet concentration, 1–X is the fractional conversion, and T is the temperature 
in K.  The first equation is the mole balance on SO2, and the second is the energy balance.  The 
first term on the right-hand side of Eq. (8.24) represents cooling at the wall; the second term 
there is the heat of reaction.  The Python program to solve these equations follows. Note that 
both the exp and sqrt functions need to be imported. 

 
from scipy.integrate import odeint 
from scipy import exp, sqrt 
import matplotlib.pyplot as plt 
import numpy as np 
 
# define the functions or right-hand sides 
def ydot(y, t): 
    # y(0) is X, y(1) is T 
    X = y[0] 
    T = y[1] 
    k1 = exp(-14.96 + 11070 / T) 
    k2 = exp(-1.331 + 2331 / T) 
    Keq = exp(-11.02 + 11570 / T) 
    term1 = X * sqrt(1 - 0.167 * (1 - X)) 
    term2 = 2.2 * (1 - X) / Keq 
    denom = (k1 + k2 * (1 - X)) ** 2 
    rate = (term1 - term2) / denom 
    return (-50 * rate , -4.1 * (T - 673.2) + 1.02e4 * rate) 
 
# set the initial conditions 
y0 = np.zeros(2,dtype=float) 
y0[0] = 1.0 
y0[1] = 673.2 
 

€ 

dX
dz

= −50R',  dT
dz

= −4.1(T −Tsurr ) +1.02  104R'

€ 

R'=
X[1− 0.167(1− X)]1/ 2 − 2.2(1− X) /Keq

[k1 + k2(1− X)]
2

€ 

lnk1 = −14.96 +11070 /T, lnk2 = −1.331+ 2331/T,  lnKeq = −11.02 +11570 /T

€ 

Tsurr = 673.2, T(0) = 673.2, X(0) =1
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# set the integration limits and call odeint 
a = 0. 
L = 1.05 
tspan = np. arange (a, L, 0.05) 
y = odeint(ydot,y0,tspan) 
 
# print the solution 
print(tspan, y) 
print(y[:,0]) 
 
# plot the solution in two plots 
plt . plot(tspan, y[:,0],'*-') 
plt . xlabel ('Dimensionless axial position (m)') 
plt . show() 
plt . plot(tspan, y[:,1],'+-') 
plt . show() 

 
The solution is the same as shown on page 149, Figure 8.3. 
 

 
 

(a) 
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(b) 

Figure 8.3. (a) Fraction converted; (b) temperature, using Python 
 
 
CHEMICAL REACTORS WITH MASS TRANSFER LIMITATIONS 
  
 When there are mass transfer limitations the reaction rate is calculated based on the 
concentration on the solid catalyst, not the concentration in the fluid. As shown on p. 155, et. 
seq. it is necessary to solver for the mass transfer as well as integrate the equation. The equations 
are: 

 

   (8.39) 

 
The mass transfer equation is:  
 
   (8.40) 
 
Looking closely at Eq. (8.39)-(8.40) you can see that in order to solve the differential equations 
in Eq. (8.39) you must solve Eq. (8.40) at every position z.  Thus, this is a problem that combines 
ordinary differential equations with nonlinear algebraic equations.   
 Python easily handles these kind of problems.  We have to define a function to solve Eq. 
(8.40) and call that function inside the function that defines the ordinary differential equations 
(8.39). The function for Eq. (8.40) must appear in the code before the one for Eq. (8.39). 
Basically you call a routine to integrate the ordinary differential equations (e.g., odeint).  You 
construct a right-hand side function (here called ydot) to evaluate the right-hand side.  The input 

€ 

u dCA

dz
= −2ksCA ,s

2  , u dCB

dz
= +ksCA ,s

2  , u dCC

dz
= 0

€ 

kma(CA −CA ,s)  =  ksCA ,s
2
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variables are z and the three concentrations, and the output variables are the three derivatives.  
Take CA and solve Eq. (8.40) using the function mass_rxn to find CA,s at this location, z.  Then 
evaluate the rates of reaction in Eq. (8.39). The program follows. 
 

def mass_rxn(CAs,CA): # define the mass balance equation 
    k = 0.3 
    km = 0.2 
    return km * (CA - CAs) - k * CAs * CAs 
 
def ydot(y, t): # define the ordinary differential equations 
    CA= y[0] 
    CAguess = CA 
    CAs = fsolve(mass_rxn,CAguess,CA) 
    rate = 0.3*CAs*CAs 
    return (-2.*rate/0.5, +rate/0.5, 0.) 
 
# set the initial conditions 
y0 = np.zeros(3,dtype=float) 
y0[0] = 2.0 
y0[1] = 0.0 
y0[2] = 2.0 
 
# set the integration parameters 
a = 0. 
VR = 2.6 
tspan = np. arange (a, VR, 0.2) 
 
# integrate the ordinary differential equations 
y = odeint(ydot,y0,tspan) 
 
print(tspan, y) # print the solution 
print(y[:,0]) 
 
# plot the solution 
plt . plot(tspan, y[:,0],'*-',label='$A$') 
plt . plot(tspan, y[:,1],'+-',label='$B$') 
plt . plot(tspan, y[:,2],'x-',label='$C$') 
plt . legend() 
plt . xlabel ('Length (m)') 
plt . ylabel ('Concentrations (kgmol/m^3)') 
plt .show() 

 
 
The solution is shown in Figure 8.10, which is the same as found with MATLAB.  With mass 
transfer resistance included, the outlet concentration of B is 0.61.  When there was no mass 
transfer limitation, the outlet concentration of B was 0.85.  Thus, the reactor is not able to 
produce as much product, and a bigger reactor is required.   
 



Introduction to Chemical Engineering Computing, Chapter 8 with Python – Copyright, Bruce A. Finlayson, 
2017 

 

 

20 

 
 

Figure 8.10. Solution to Eq. (8.39)-(8.40) when mass transfer is important, using Python 
 
CONTINUOUS STIRRED TANK REACTORS 
  
 Eq. (8.15) gave the mass balance for a continuous stirred tank reactor (CSTR).  A similar 
equation can be written as an energy balance.  This example considers a CSTR in which a first-
order reaction occurs, but the temperature also changes due to the heat of reaction.  The 
equations to be solved are: 

 

 (8.53) 

 
The left-hand sides are the flow rate times a concentration or temperature difference between the 
input and output, divided by the volume.  The equations have been normalized by the inlet 
concentration and temperature.  The right-hand sides are the rate of reaction and the rate of 
energy generation due to reaction, respectively.   

The case described by Eq. (8.53) is for an adiabatic reactor.  When the reactor is 
adiabatic, the equations can be combined by multiplying the first equation by β and adding it to 
the second equation; then the right-hand side vanishes. 

 
 (8.54) 

 
This equation can be solved for T. 

€ 

Q
VR

(1− c) = c  exp[γ(1−1/T)]

Q
VR

(1−T) = −β  c  exp[γ(1−1/T)]

€ 

β(1− c) + (1−T) = 0
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  (8.55) 
 
Now the mass balance can be considered a single equation in one unknown (c). 
 

  (8.56) 

 
Solution using Python 
 
 The program to solve this equation just requires using fsolve to find the roots to a single 
equation. 
 

 
from scipy optimize import fsolve 
import numpy as np 

 
# define the function 
def rate_T(c,param): 
    beta = param[1] 
    gamma = param[2] 
    flowvol = param[3] 
    T = 1 + beta*(1.0-c) 
    rate = c * exp(gamma * (1.0 - 1.0/T)) 
    return flowvol * (1.0 - c) - rate 
 
# set the parameters 
param = np.zeros(4,dtype=float) 
param[1] = 0.15 
param[2] = 30.0 
param[3] = 8.7 
print(param) 
# print(rate_T(0.5,param)) #used for testing 
 
# solve the problem 
c = fsolve(rate_T,0.5,param) 
print ('The root c is %10.4f' % c) 
 

The answer is the same as before, 0.7311. 
 
CSTR with multiple solutions 
 
 For a different set of parameters, the CSTR can have more than one solution.  For this 
problem, the solutions all lie between 0 and 1, because the concentration has been normalized by 
the inlet value, where the normalized concentration is 1.0,  and the reaction uses up the material.  
Which solution you get depends upon the initial guess of c.  Use Python to solve the problem 

€ 

T =1+ β(1− c)

€ 

Q
VR

(1− c) = c  exp[γ(1−1/{1+ β −βc})]
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when Q/VR = 25, β = 0.25, keeping γ = 30.  Successive trials led to the results shown in Table 
8.1, which are the same solutions obtained using Excel. 
 

 Initial guess of c Final result 
0 0.0863 
0.5 0.5577 
1.0 0.9422 

 
Table 8.1. Multiple solutions to Eq. (8.56) when Q/VR = 25, β  = 0.25, γ  = 30, using Python 

 
Solutions to multiple equations using MATLAB.   
 
 When two or more variables must be found, as in Eq. (8.53), a solution can be found to 
make both the equations zero without rearrangement like that to produce Eq. (8.56).  The main 
requirement is that the return statement has two parts to it (separated by commas). 
 

def rate_T(y,param): 
    beta = param[1] 
    gamma = param[2] 
    flowvol = param[3] 
    c = y[0] 
    T = y[1] 
    rate = c * exp(gamma * (1.0 - 1.0/T)) 
    return (flowvol * (1.0 - c) - rate, flowvol * (1.0 - T) + beta * rate) 
 
param = np.zeros(4,dtype=float) 
param[1] = 0.15 
param[2] = 30.0 
param[3] = 8.7 
y = fsolve(rate_T,[0.5, 1.1],param) 
print ('The concentration is %10.4f ' % y[0]) 
print ('The temperature is %10.4f ' % y[1]) 

 
The answer is the same as before, 0.7311 and 1.0403.  
 
TRANSIENT CONTINUOUS STIRRED TANK REACTORS  
 
 Reactors don’t always run at steady state.  In fact, many pharmaceuticals are made in a 
batch mode.  Such problems are easily solved using the same techniques presented above 
because the plug flow reactor equations are identical to the batch reactor equations.  Even CSTRs 
can be run in a transient mode, and it may be necessary to model a time-dependent CSTR to 
study the stability of steady solutions.  When there is more than one solution, one or more of 
them will be unstable.  Thus, this section considers a time-dependent CSTR as described by Eq. 
(8.57).  

 



Using Python in Chapter 8 – Copyright, Bruce A. Finlayson, 2017 

 

23 

 (8.57) 

 
The variables are 
 

V = reactor volume, Q = volumetric flow rate 
 

k0 = reaction rate constant, E = activiation energy 
φ = void fraction, ρ = density, Cp = heat capacity per mass (8.58) 
subscript f for fluid, s for solid 
–ΔHrxn = heat of reaction, energy per mole 

 
The non-dimensional form of these equations is 

 

 (8.59) 

 
The parameters are defined as 
 

  (8.60) 

 
The parameter Le is a Lewis number, and it includes the heat capacity of the system.  The Da is a 
Damköhler number and includes the rate of reaction.  The parameters are taken as 
 
  (8.61) 

 
from scipy.integrate import odeint 
import matplotlib.pyplot as plt 
import numpy as np 

 
def ydot(y, tspan, param): 
    c = y[0] 
    T = y[1] 
    Damk = param[0] 
    Tin = param[1] 
    beta = param[2] 
    Lewis = param[3] 
    gamma = param[4] 

€ 

V dc'
dt'

=Q(c '−c 'in ) −Vk0c 'exp(−E /RT ')

[φ(ρCp ) f + (1−φ)(ρCp )s]V
dT '
dt '

= −(ρCp ) f Q(T '−T 'in ) + (−ΔHrxn )Vk0c'exp(−E /RT ')

€ 

c'= concentration, T '= temperature, t'= time

€ 

dc
dt

= (1− c) − c • Da • exp[γ(1−1/T)]

Le dT
dt

= (1−T) + β • c • Da • exp[γ(1−1/T)]

€ 

c =
c '
c'in
, T =

T '
T 'in

, t =
Qt'
V
,Da =

V
Q
k0 exp(−

E
RT 'in

)

Le =
φ(ρCp ) f + (1−φ)(ρCp )s

(ρCp ) f
, β =

(−ΔHrxn )c 'in
(ρCp ) f T 'in

€ 

β = 0.15, γ = 30, Da = 0.115, Le =1080, c(0) = 0.7, T(0) =1
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    rate = c*Damk*exp(gamma * (1.0 - 1.0/T)) 
    return (1 - c - rate, (Tin - T - beta*rate)/ Lewis) 
 
# set the initial conditions 
y0 = np.zeros(2,dtype=float) 
y0[0] = 0.7 
y0[1] = 1.0 
 
# set the integration conditions 
tstart = 0. 
tend = 2.1 
tspan = np. arange (tstart, tend, 0.1) 
 
# set the parameters 
# Damk, Tin, beta, Lewis, gamma 
param = (0.115, 1.0, 0.15, 1080.0, 30.0) 
print(param) 
 
# integrate the equations 
y = odeint(ydot,y0,tspan,args=(param,)) 
 
# print the solution 
print(tspan, y) 
 
# plot the solution 
plt . plot(tspan, y[:,0],'*-',label='$Concentration$') 
plt . xlabel ('Time') 
plt . ylim(0.65, 1.05) 
plt . plot(tspan, y[:,1],'+-',label='$Temperature$') 
plt . legend(loc=(0.1,0.5)) 
plt . xlabel ('Time') 
plt . show() 

 
 

Figure 8.15. Transient CSTR, up to t = 2, using Python 
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The steps in the program are the same as in other applications: define the function, set the initial 
conditions, integration limits, parameters, integrate the differential equations, print the results, 
and plot the graph. The only difference is that parameters are passed to the function, and these 
need to be defined as a tuple, the tspan and param. 
 
The result is shown in Figure 8.15.  It looks like steady state is achieved by the time that t = 2.  
This is not true, however.  Integrate to t = 1000 and look at the results in Figure 8.16.  It still has 
not reached steady state.  The reason is that the temperature responds much more slowly than 
does the concentration.  Thus, the concentration comes to a steady state value appropriate to the 
current temperature, but then the temperature keeps changing and the concentration must change 
to keep up.   Notice the very rapid change of c from the initial value of 0.7 to about 0.89 in 
Figure 8.16.  This is because the value of c = 0.7 was not appropriate for a temperature of 1.0.  In 
mathematical terms, the time response of the two variables is very different  (the eigenvalues of 
the equation are widely separated), and the system is called stiff.   See Appendix E for more 
discussion about stiff equations. 
 

 
Figure 8.16. Transient CSTR, up to t = 1000, using Python 

 
Next we integrate to t = 40,000, as shown in Figure 8.17 with the following changes in the 
program. 
 

tstart = 0. 
tend = 41250.0 
tspan = np. arange (tstart, tend, 1250.0) 

 
This looks funny, but it is because the first data point for concentration (after the initial 
condition) misses some of the detail shown in Figure 8.16. One way to improve the figure is to 
just leave out the 1250.0 in tspan. Then the odeint will plot whatever points it has solved for. 
Another solution is to integrate to 1000 and use that as the initial guess for another calculation to 
40,000. The changes in the program are as follows. 
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# set the integration conditions 
tstart = 0. 
tend = 1020.0 
tspan = np. arange (tstart, tend, 20.0) 
 
# integrate to t = 1000. 
y = odeint(ydot,y0,tspan,args=(param,)) 
 
# set the integration conditions again 
tstart = 1000.0 
tend = 40000.0 
tspan = np. arange (tstart, tend, 1250.0) 
 
# set the initial conditions to the ending conditions of the previous calculation 
y0[0] = y[50,0] 
y0[1] = y[50,1] 
 
# continue the integration 
y2 = odeint(ydot,y0,tspan,args=(param,)) 
 
# plot the extension 
plt . plot(tspan, y2[:,0],'*-') 
plt . plot(tspan, y2[:,1],'+-') 
plt .show() 

 

 
 

Figure 8.17. Transient CSTR, up to t = 40.000, using Python 
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Figure 8.17_revised. Transient CSTR, up to t = 40,000, using Python 
 

Next change the parameter Le from 1080 to 0.1 and integrate to t = 100.  The changes to 
the code are: 

 
param = (0.115, 1.0, 0.15, 0.1, 30.0) 
 

and 
tend= 100.025 
tspan = np. 27rrange (tsta, tend, 0.025) 

 
Figure 8.18 shows the limit cycle as the concentration and temperature never reach steady state. 
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Figure 8.18. Transient CSTR, Le= 0.1, up to t = 100, using Python 

 
Figure 8.19 shows the temperature plotted versus the concentration, and the limit cycle is clear. 

 
Figure 8.19. Limit cycle display of Figure 8.18, using Python 
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APPENDIX F.  HINTS WHEN USING PYTHON 
 

This appendix provides hints and tips when using Python1.  Python is a programming 
language first developed by Guido van Rossum in 1991, but it has been a good programming 
language for scientific work only since about 2008. Since then mutually incompatible add-on 
packages have been consolidated into a few compatible packages (see below).2 Python assumes 
that you are a beginner in using Python, but not an absolute beginner in computer programming.  
Most likely, you remember concepts from a computer programming class taken earlier.  Included 
in Appendix F are general features that are useful in all the applications solved with Python.  
Other features are illustrated in the context of specific examples; a list of examples is provided at 
the end of the appendix for handy reference.  You’ll probably want to skim this appendix first, 
then start working some of the problems that use Python to gather experience, and finally come 
back and review this appendix in more detail.  That way you won’t be burdened with details that 
don’t make sense to you before you see where and how you need them.   

 
Outline of Appendix F: 
1. General features: loading Python, screen format, and creating a program, classes of 

data 
2. Programming options: input/output, functions, loops, conditional statements, timing, 

matrices, matrix multiplication 
3. Finding and fixing errors 
4. Solving linear equations and finding eigenvalues of a matrix 
5. Evaluate of an integral 
6. Interpolation: splines and polynomials: spline interpolation, polynomial interpolation, 

polynomials of degree n, fit a function to data and plot the result, fit a polynomial to 
data  

7. Solve algebraic equations 
8. Integrate ordinary differential equations that are initial value problems: differential-

algebraic equations, checklist for using odeint 
9. Plotting: simple plots, multiple plots, bold, italics, and subscripts, Greek letters, 

contour plots, 3D plots 
10. Python help 
11. Applications of Python 

 
F.1. GENERAL FEATURES 
 
Loading Python, Screen Format, and Creating a Program 
 
 The web site https://www.python.org/ has options for downloading Python. The author 
has chosen to use Pycharm, which is available at https://www.jetbrains.com/pycharm/; click 
download. There is a Community version that is free, and that is adequate here. Documentation 
                                                                    

1 Python is a programming language that is user-supported and available from the Python 
Foundation: https://www.phthon.org The examples here use PyCharm ver. 3.6. 
2 Python for Scientists, John M. Stewart, Cambridge University Press, Cambridge, England, 
2014. 
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is available at https://docs.python.org/3/library/index.html. Other sources include the 
Introduction to Python for Computational Science and Engineering, by Hans Fangohr of the 
University of Southhampton, available as a pdf from  
https://www.southampton.ac.uk/~fangohr/training/python/pdfs/Python-for-Computational-
Science-and-Engineering.pdf and the books Chemical and Biomedical Engineering Calculations 
Using Python, by Jeffrey J. Heys, Wiley, 2017 and Python For Scientists,  by John M. Stewart, 
Cambridge University Press, Cambridge, England, 2012. 
 
The following websites may be useful. 
http://docs.python.org/2/tutorial 
http://matplotlib.org/api/pyplot_summary.html 
http://matplotlib.org/gallery.html 
http://www.scipy.org/NumPy_for_Matlab_Users 
 
The following pdf documents are also useful, obtained from https://docs.scipy.org/doc/. 
scipy-ref-0.18.1.pdf 
numpy-user-1.11.0.pdf 
 
The Python program includes many features, but not everything needed for scientific calculation. 
Other modules can be added. The ones used here are math, numpy, scipy, and matplotlib. The 
last three must be added to the same area where the Python program is stored. On a Macintosh, 
open Terminal, back up one directory (cd ..) twice, then choose the directories in turn: cd usr, cd 
local, cd bin. Then say python3.5 –m pip install numpy, etc. This need be done only once.   
 
Then when you open Python you will be asked if you want to open an existing project or create a 
new one. For a new one, provide a name. Then in the upper left choose the project name, then 
File/New… in the pull-down menu. Several options are there; choose File and give it a name 
ending with .py, such as screen.py. The upper right area is the editor where you type the program 
screem.py, and the lower left area is where the output appears (unless you are writing to a file). 
The screen will look like Figure F.1. Along the bottom there are several options. Python Consol 
is where you can type in a Python command and immediately have it executed. That is useful for 
testing commands and their syntax. Terminal is the area mentioned below for importing other 
programs and can be accessed from this Python window. Run is where the output appears when 
you run a program. 
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Figure F.1. Python Screen 
 

 
However, when you type a command in the Python editor it will not execute until you say Run 
(in the Run pull-down menu or the green triangle). If you just want to try some commands and 
get the answer directly, there are several options. You can choose Python Console and enter the 
command there. Or on the Macintosh open terminal independently of Python and say python. 
The fact that you see >>> indicates that Python is waiting for input. The symbol >>> indicates a 
computer command is expected and the result is printed immediately after you press return.  
 
 >>> 4+5 
 9 
 >>> type(4+5) 
 <class ‘int’> 
 
In the terminal window you can say: import math, then dir(math) and see the functions that are 
included. They include trigonometric functions, inverse trigonometric functions, hyperbolic 
trigonometric functions, exponentials, error functions, as well as others. If you want to see what 
modules you can import, go to the terminal window and say help(‘modules’). A long list is 
provided which includes math, numpy, scipy3, and matplotlib. To stop using the terminal as an 
interpreter or consol say exit(). 
 
                                                                    

3 Some of the scipy programs require a FORTRAN compiler, but none of the examples here need 
that. Legacy FORTRAN programs can be used; see Chapter 8 in  Python For Scientists. 
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 Once you are ready to create a program, type it in the editor window. Comment lines in 
your code begin with a #. If you wish to have several lines as a paragraph of comments, then use  
""" paragraph goes here """. In the examples below, the symbol >>> indicates a computer 
command and the result is printed here immediately after. In actuality, you would put all the 
computer commands together in the file and get all the output in the run window at the lower left 
unless you were executing commands line by line in terminal. 
 
The usual arithmetic symbols +, –, x, and / are used. Exponentiation is done using **, as in x**2. 
 
In print commands with two or more variables (separated by commas) the comma itself provides 
a space between the variables. The \n indicates a carriage return. 
 
There are also specialized programs submitted by others, but these require a compiler for another 
language and are not treated here. You can see them at http://pypi.python.org/pypi.  
 
Classes of Data 
 
 Variables can be integers, floating point numbers, strings, and Boolean variables. Setting 
a = 4.0 provides a floating point number but setting b = 4 provides an integer. 
 
 >>>import numpy as np 
 >>>a = 4.0 
 >>>print(a) 
 4.0 
 >>>print(type(a)) 
 <class 'float'> 
 b = 4 
 >>>print(b) 
 4 
 >>>print(type(b)) 
 <class 'int'> 
 
The floating point numbers involve 16 digits of precision, which is called double precision in C 
and MATLAB. You can see all the digits in this way. Messages can be combined with the 
numerical output for clarity.  
 
 b = 2.3456789 
 >>> print('long format %20.16e' % b) 
 long format 2.3456788999999998e+00 
 
 >>> print('long format %20.16f' % b) 
 long format   2.3456788999999998 
 
Most of your work will involve numbers, but sometimes you will want to use text or words. 
Strings are text. 
 
 >>> print("Chemical Engineering rules.") 
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 Chemical Engineering rules. 
 >>>print(type(c)) 
 <class 'str'> 
 
Information read in by a file is read as a string and must be converted to float or int to use in 
calculations. 
 
A number can be converted to a character using the str command and back using the float 
command. 
  
 >>>d = str(b) 
 >>>print(type(d)) 
 <class 'str'> 
 >>>e = float(d)  
 >>>print(type(e) 
 <class 'float'> 
 
Boolean variables are discussed below in conjunction with conditional statements. 
 
Python is case sensitive so that t(i) and T(i) are different. 
 
F.2. PROGRAMMING OPTIONS: INPUT/OUTPUT, FUNCTIONS, LOOPS, 
CONDITIONAL STATEMENTS, TIMING, MATRICES 
 
Input/Output 
 
 You can ask the user for input with the following command. 
 
 >>> viscosity = input('What is the viscosity (Pa s)?') 
 
When you see ‘What is the viscosity (Pa s)?’ in the run-time window, type the value and press 
return. Keep in mind that what comes in is treated as a string. Thus, if you typed 3.456 and 
asked print(type(viscosity)) you would get <class 'str'>. You would have to use the 
float(viscosity) command to convert it to another variable name as a floating point number. You 
can test this with print(viscosity+viscosity), and you will get 3.4563.456. If you convert 
viscosity to a float: viscosityf = float(viscosity) and printed viscosityf+viscosityf you would get 
6.912. You can display in a specified format: 
 
 >>> a =  1.25456 
 >>>b = 5.4521 
 >>>print ('\nThe values of a and b are %7.4f %5.3e' % (a, b)) 
 
gives 
 
 The values of a and b are  1.2546 5.452e+00 
 
These are C-commands, and the notation means: 
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 f – floating point 
 \n is a carriage return 
 e – exponential format 
 5.3 means five characters, three after the decimal point. 
 
To write a text file, you must open it, write it, and close it.  The following commands write a text 
file, closes the file, opens it and reads it.  
 
 # Open the file, write to it, and close it  
 >>>out_file = open ("test.txt", "w")  
 >>>out_file . write ("Writing text to file. This is the first line.\n"+\ 
 "And the second line.") 
 >>>out_file . close ()  
  
 # Open the file, read it, and close it 
 >>>in_file = open ("test.txt", "r")  
 >>>text = in_file . read ()# read into a string variable ‘text’ 
 >>>in_file . close () 
 
 # Display the text 
 >>>print (text) 
 Writing text to file. This is the first line. 
 And the second line. 
 
Numbers written to a file are written as text and must be converted to float or int when read in. 
The first step is to put them into an array, then save the array as a text file. It is read as a text file 
and is converted to a numbers. 
 
 >>>import numpy as np 
 
 >>> a = [2.345, 4.567, 6.789] 
 >>>np.savetxt('x.txt', a) 
 >>>xc=np.loadtxt('x.txt') 
 >>>print(xc) 
 [ 2.345  4.567  6.789] 
 
 >>>print (type(xc)) 
 <class 'numpy.ndarray'> 
 
 >>>print (xc[1]*xc[2]) 
 31.005363 
 
Functions 
 
 A function is defined with the def command. The commands within the function must be 
indented, and the last line returns the results. For example 
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 >>>def f(x): 
 >>>    return x ** 3 - 2 * x ** 2 
 
will take the value of x and compute the number, returning it. The program following this 
definition will not be indented – that is how the function definition is ended. The command 
 
 >>>print(f(3)) 
 
gives the value 9. There may be more than one argument, such as f(x,y,z), and numbers may be 
assigned to them. 
 
 >>>def f(x=3,y=4,z) 
 
In this case x will take the value 3, unless it is specified otherwise, and z must be specified before 
the function is called. The function definition can be anywhere in the program as long as it is 
defined before it is called. Examples with many input variables are given on pages 11, 21, 22, 44. 
 
Loops 
 
It is sometimes useful to execute a command over and over, putting each result in one element of 
a vector.  One option is to compute something when an index goes from a starting value to an 
ending value. 
 
 >>>print ('loop using range') 
 >>>i = 0 
 # range(start, end, increment) 
 # does not include the last number, end 
 >>>for i in range(0,10,1): 
     >>>    print(i) 
     >>>   i = i + 1 
 
The output is: 
 
 loop using range 
 0 
 1 
 2 
 … 
 8 
 9 
 
Note that the loop does not include the ending value. The increment is optional.  Another option 
is to use  the while command. 
 
 >>>print('\nloop using while')  
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 >>>i=0 
 # while(condition) 
 >>>while (i < 5): 
 >>>    print(i) 
 >>>    i=i+1 
 
The output is: 
 
 loop using while 
 0 
 1 
 2 
 3 
 4 
 
If you want the loop not to do the remaining calculations if a condition is true, the program will 
continue the loop but not execute the rest of the commands, going back to the start of the loop.  
 
 >>>for i in range(…): 
 >>> <block1> # commands to be executed every time 
 >>>  if <condition> #don’t execute the commands <block2>, but continue the loop 
 >>> continue 
    >>><block2> 
 
If you want to stop before the end depending on a condition: 
 
 >>>for i in range(…): 
 >>>    <block1> # commands to be executed every time 
 >>># don’t execute the commands <block2>, and get out of the loop 
 >>>    if <condition> 
 >>>      break 
    >>>    <block2> 
 
Conditional Statements 
 
 A Boolean number is either True or False. The following command produced 3. 
 
 >>>c = True 
 >>>if (c): 
 >>>    print(3) 
 >>>else: 
 >>>    print(2) 
 3 
 
The following commands produced 2.  
 >>>c = False 
 >>>if not c: 
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     >>>     print(2) 
 >>>else: 
     >>>   print(3) 
 2 
 
Note the indentation of four spaces after the if/else commands. This is done automatically by 
using a tab but is essential for telling where the section ends. Also note the : at the end of the 
conditional statement. 
 
Sometimes the program needs to execute different instructions depending upon a calculated 
result.  The following program prints negative if i is negative, 5 if it is between 0 and 5 (not 
including 5) and 6 otherwise.  
 
 >>>if (i<0): 
     >>> print("negative") 
 >>>elif (i<5): 
     >>>    print ("5") 
 >>>else: 
     >>> print ("6") 
 
The other command are: 
 
 ==  which means the left-hand side is equal to the right-hand side, 
 not (var) == (condition)    which means they are not equal, 
 (var) != (condition)     which means they are not equal, 
 >=  which means greater than or equal, 
 <=  which means less than or equal. 
 
One can also test two conditions with the <condition1> and <condition2> command. They both 
have to be true for the expression following to be used. If one uses or then the expression 
following is used if either condition1 or condition2 is true. The command not switches from true 
to false.  
 
Timing information 
 
 To measure the time a calculation takes, import time. Then say starttime = time.time() to 
begin the clock. At a later point in the program say endtime = time.time(). Then the following 
commands give you the time between those two calls. 
 
 >>>elapsedTime = endtime - starttime 
 >>>print('total time is %10.3f seconds' % elapsedTime 
 total time is      2.211 seconds 
 
Matrices 
 
 Vectors are row (1x3) 
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 >>>x = [2, 4, 6] 
 
 establishes a vector with three elements, numbered 0, 1, and 2; x(0) = 2,…x(2) = 6. 
 
The matrix A  
 

 A =
2 6 6
8 10 12
1410 18

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
 

is set by 
 
 >>>A = ([2, 6, 6],[8, 10, 12], [14, 10, 18]) 
 
In Python these are called arrays, and each element of an array must be the same type. Python 
has the capability of having lists, in which the elements need not be the same; some can be 
numbers, some text, even pictures. 
 
Two arrays can be added, multiplied, or divided, element by element. 
 
 >>>import numpy as np 
 
 >>>a = np.array([0,1,5]) 
 >>>print(a) 
 [0 1 5] 
 >>>c = np.array([1,3,5]) 
 >>>print(c) 
 [1 3 5] 
 >>>print(a+c) 
 [ 1  4 10] 
 >>>print(a*c) 
 [ 0  3 25] 
 >>>print(a/c) 
 [ 0.          0.33333333  1.        ] 
 
You can operate on one element of the array by using indices. In this example c[1] += 1 means 
add 1 to c[1]. It could also be written c[1] = c[1] + 1. 
 
 >>>c[1] += 1 
 >>>print(c) 
 [1 4 5] 
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Matrix Multiplication 
 

 Take the matrix A =
2 6 6
8 10 12
1410 18

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
and the vector . 

 
and compute the dot product. 
 

A =
2 6 6
8 10 12
1410 18

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

2
3
4

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

46
94
130

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
 

(F.1) 

  
 import numpy as np 
 
 >>>AA=np.matrix([[2, 6, 6], [8, 10, 12], [14, 10, 18]]) 
 >>>print(AA) 
 [[ 2  6  6] 
  [ 8 10 12] 
  [14 10 18]] 
 
 >>>Bb=np.array([[2], [3], [4]]) 
 >>>print(Bb) 
 [[2] 
  [3] 
  [4]] 
 
 >>>ans = np.dot(AA,Bb) 
 >>>print(ans) 
 [[ 46] 
  [ 94] 
  [130]] 
 
is [3x3][3x1] = [3x1] matrix.  Note the brackets in Bb; Bb is a column vector, which is needed 
for matrix multiplication. Note the difference between Bb and setting  
 
 >>>b=np.array([1, 3, 5]) 
 >>>print(b) 
 [1 3 5] 
 
F.3. FINDING AND FIXING ERRORS 
 

One source of confusion is when you think you have defined a variable, but haven’t 
really.  Use print(x), Run to see the current value of x in the output window. The programs 
illustrated in this book are fairly simple, and they are easy to debug.  All programmers make 
mistakes; good programmers learn to find them!  Finding them is easy if you take the time.  First 

€ 

x'=
2
3
4

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 
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consider a line in a code.  Set all the parameters used in the line and execute the line in the 
console.  Compare the answer with a calculation done with a calculator or one you did by hand.   
Be sure that all the parameters you use are different, and don’t use zero or one, because some 
mistakes won’t be picked up if the variable is zero or one.   The parameters you use for testing 
can be single digit numbers that are easy to calculate in your head, and they can be completely 
unrelated to the problem you are solving. If you haven’t specified one of the parameters the 
output will identify the missing parameter. 
 
F.4. SOLVING LINEAR EQUATIONS AND FINDING EIGENVALUES OF A MATRIX 
 
 To solve the equation  
 
 A* x ' = Bb , where A and Bb are  
 

  A =
2 6 6
8 10 12
1410 18

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
,  Bb =

1
3
5

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥  

we say  
 
 >>>x=LA.solve(AA,Bb) 
 >>>print (x) 
 
and get 
 
 [[ -2.50000000e-01] 
  [ -9.71445147e-17] 
  [  4.16666667e-01]]. 
 
To get the inverse of A, say 
 
 >>>CC = LA.inv(A) 
 >>>print(CC) 
 [[-0.625       0.5        -0.125     ] 
  [-0.25        0.5        -0.25      ] 
  [ 0.625      -0.66666667  0.29166667]] 
 
Multiplying A by CC gives a diagonal matrix. 
 
 >>>ans = np.dot(A,CC) 
 >>print(ans) 
 
 [[  1.00000000e+00   0.00000000e+00  -8.32667268e-17] 
  [  8.88178420e-16   1.00000000e+00   1.11022302e-16] 
  [  1.77635684e-15   0.00000000e+00   1.00000000e+00]] 
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Eigenvalues are the polynomial roots to Eq. (F.2).   
 

 (F.2) 
 

They are easy to calculate in Python using the eig command. 
 
 >>>import numpy 
 >>>import numpy . linalg as LA 
 
 >>>A = ([2, 4, 6],[8, 10, 12], [14, 16, 18]) 
 >>>evalues , evectors = LA.eig (A) 
 >>>print ( evalues ) 
 >>>print ( evectors ) 
 
gives the eigenvalues and eigenvectors. 
 
 [  3.22336879e+01  -2.23368794e+00  -2.60735545e-15] 
 [[-0.23197069 -0.78583024  0.40824829] 
  [-0.52532209 -0.08675134 -0.81649658] 
 [-0.8186735   0.61232756  0.40824829]] 
 
In this example, the matrix is nearly singular, and one of the eigenvalues is very small.  
 
F.5. EVALUATE AN INTEGRAL 

 
To evaluate the integral, Eq. F.3, import the function quad from scipy.integrate.  
 

 (F.3) 

 
 from scipy.integrate import quad 
 # function we want to integrate 
 def f(x): 
        return x * x 
 
 res, err = quad(f, 0, 2) # call quad to integrate f from 0 to 2 
 # print("The numerical result is {:f} (+-{g})".format(res,err)) 
 print("The numerical result is {:f} ".format(res)) 
 
The output is 
 
 The numerical result is 2.666667 

 
  

€ 

Aij − λδij = 0

€ 

area = x 2dx
0

2

∫
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F.6. INTERPOLATION: SPLINES AND POLYNOMIALS 
 
Spline Interpolation 

 
Make a cubic B-spline pass through all the data points: [x(i), y(i), i = 1,...,m].  A cubic 

spline is a cubic function of position, defined on small regions between data points.  It is 
constructed so the function and its first and second derivatives are continuous from one region to 
another.  It usually makes a nice smooth curve through the points.  The following commands 
create Figure F.2. 

 
 from scipy.interpolate import CubicSpline  # import the functions 
 from math import cos 
 import matplotlib.pyplot as plt 
 import numpy as np 
 
 x = np.arange (0, 11, 1) # use points from 0 to 10 with an interval of 1 
 y = np.cos(x)  # calculate the cos of each x in the vector x   
 print (x) 
 print (y) 
 
 #Cubic Spline 
 f = CubicSpline(x, y) # compute the cubic spline 
 xnew = np.arange(0, 9, 0.1) # create a list of points closer together 
 ynew = f(xnew)  # calculate the value at xnew using the interpolation    
                  # function computed by Cubic Spline 
 plt.axis([0, 10, -1.5, 1]) # set the x- and y- axis 
   plt.plot(x, y, 'o', xnew, ynew, '-') # plot 
   plt.show() 

 

 
Figure F.2. Spline fit of a set of data points 

 
Polynomial Interpolation 
 
 To use a piecewise polynomial through the points, not a Cubic Spline, simply replace the  
Cubic Spline code with the following. 

0 2 4 6 8 10
−1.5

−1

−0.5

0

0.5

1
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 # Linear (default) 
 y = x * x 
 f = interpolate.interp1d (x, y) 
 xnew = np.arange(0, 9, 0.1) 
 ynew = f(xnew) 
 # use interpolation function returned by `interp1d` 
 plt.plot(x, y, '+', xnew, ynew, '-') 
 plt.show() 
 
To use a quadratic polynomial, use the command 
 
 f = interpolate.interp1d (x, y, ‘quadratic’) 
 
 
Polynomials of degree n 
 
 A polynomial of degree n can be created using poly1d. 

 
 (B.8) 

 
 p = poly1d([3,4,5]) 

 
In this case the polynomial is 3x2 + 4x + 5  and that is printed out. The coefficients can be 
obtained using  
 
 print (p.coeffs).  
 
The polynomial can be differentiated 
 
 print(p.deriv()) 
 
to give 6x + 4 , and multiplied  
 
 print(p*p) 

 
to give 9x4 + 24x3 + 46x2 + 40x + 25 . To evaluate a polynomial use print(p(2)) to give 25. 
 
Fit a Function to Data and Plot the Result 
 
 For data points x(i), yi(i), i =1,...,n  fit a function that minimizes the least squares error. 
 
 import numpy as np 
 from scipy . optimize import curve_fit 
 import pylab as plt 
 

€ 

y = p1x
n + p2x

n−1 + ...+ pnx + pn+1
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 def f(x, a, b, c): 
  # Fit function y=f(x,p) with parameters p=(a,b,c). 
   return a * np. exp (- b * x) + c 
 
 # create fake data with n = 50 points 
 x = np. linspace (0, 4, 50) 
 y = f(x, a=2.5 , b=1.3 , c =0.5) 
 # add noise 
 yi = y + 0.2 * np. random . normal ( size =len (x)) 
 # call curve fit function to get the best values of a, b, and c 
 popt , pcov = curve_fit (f, x, yi) 
 a, b, c = popt 
 print (" Optimal parameters are a=%g, b=%g, and c=%g" % (a, b, c)) 
 
 # plotting 
 yfitted = f(x, * popt ) # equivalent to f(x, popt [0] , popt [1] , popt [2]) 
 plt . plot (x, yi , 'o', label ='data $y_i$ ') 
 plt . plot (x, yfitted , '-', label ='fit $f(x_i)$') 
 plt . xlabel ('x') 
 plt . legend () 
 plt . show () 

 
 

Figure F.3. Least Squares fit of data 
 

Fit a polynomial to Data 
 
To also get a polynomial giving the best fit to the same data, add the following code: 
 
 # fit with polynomial of order 3 
 pp = np.polyfit(x, yi, 3) 
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 # print polynomial coefficient 
 print(pp)     
  
 # evaluate the polynomial at all x points 
 yfittedp = np.polyval(pp,x)  
   
  # output 
  print(x) 
  print(yfittedp) 
  plt . plot (x, yi, 'o', label ='data $y_i$ ') 
  plt . plot (x, yfittedp , '-', label ='fit $p(x_i)$') 
  plt . xlabel ('x') 
  plt . legend () 
  plt . show () 

 

 
 

Figure F.4. Polynomial Least Squares Fit of Data 
 
F.7. SOLVE ALGEBRAIC EQUATIONS 
 
 Solve  for the vector . There are three steps.   
 
Step 1 Import ‘fsolve’ from the scipy, the SCIentific Python package. Scipy must be imported to 
your computer to add it to Pycharm. 
 
 from scipy . optimize import fsolve 
 
Step2 Define the function. 
 

€ 

f i({y j}) = 0, i =1,...,n

€ 

{y j}
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 def prob2 (y): 
     u1, u2 = y 
     return (u1 ** 3 - 2 * u1 **2, u2 ** 2 - 2 * u2 + 1) 
 
Step 3 Call ‘fsolve’ with an initial guess and print the results. 
 
 u1, u2 = fsolve (prob2, (3 , 1.5)) 
 print ('\nNow solving two equations with fsolve\n') 
 print (u1, u2) 
 
The result is  
 
 Now solving two equations with fsolve 
 
 2.0 1.00000001516 
 
You need to make several checks.  The number of unknowns is set by the number of elements in 
the initial guess, (in parentheses in the fsolve command).  The defined function ‘prob2’ 
calculates , and there have to be as many elements in f as there are in y.  
The function needs to be checked, of course.  The only way you can make Python find the 
solution to your problem is to make sure the function gives the correct set of f’s when given a set 
of y’s.   If this ‘fsolve’ does not work well, try making an initial value problem and solving it 
using implicit methods, integrating to a long time.  
 

  

 
Alternatively, try a different initial guess. 
 
 There are other options for fsolve, too. These can be found in the document scipy-ref-
0.18.pdf; search on scipy.optimize.fsolve. 
 
F.8. INTEGRATE ORDINARY DIFFERENTIAL EQUATIONS THAT ARE INITIAL 
VALUE PROBLEMS 

 
To solve a single ordinary differential equation 
 

  

 
we use the ‘odeint’ functions in Python.  There are four steps.   
 
Step 1 Import odeint, and matplotlib.pyplot and numpy 
 
 from scipy.integrate import odeint 
 import matplotlib.pyplot as plt 
 import numpy as N 

€ 

f i, i =1,...,n,   given {y j}

€ 

dyi
dt

= f i({y j}), yi(0) = initial guess

€ 

dy
dt

= f (t,y),  y(0) = y0
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Step 2 Define the function. 
 
 def f(y, t): 
 # this is the rhs of the ODE to integrate , i.e. dy/dt=f(y,t) 
  return -2 * y * t 
 
Step 3 Set the initial condition, y0 and time span for the integration as well as the values of t for 
which we want the solution from 0 to 10 at intervals of 0.1. 
 
 y0 = 3 # initial value 
 a = 0 # integration limits for t 
 b = 10 
 t = N. arange (a, b, 0.1) 
 
Step 4  Call odeint. 
 
 y = odeint(f, y0, t) or y = odeint(f, 3, (0,10)) # actual computation of y(t) 
 
Since odeint will integrate whatever equation you give it, and the function ‘f’ is going to be used 
many times, you must insure that it is correct: given a t and y it computes the correct f(t,y) and 
returns the variable which is ydot.  Once you have checked the program and run it, it is easy to 
plot the solution. 
 
 plt . plot (t, y) 
 plt . xlabel ('t'); plt . ylabel ('y(t)') 
 plt . show () 

 
Numerical values can be obtained from 
 
 print(t, y) 
 
to give  
 
 [ 0.   0.1  0.2  …… 
 [  3.00000000e+00] 
  [  2.45619230e+00] 
  [  2.01096019e+00]… 
 
 To solve a set of ordinary differential equations 
 

   

 
we do the same steps except that the initial condition is now a vector with N elements, the 
function ‘rhs’ must compute N functions using the vector y with N elements, and we have to 
return the result for each derivative. € 

dyi
dt

= f i({y j}),   yi(0) = yi0
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# define the function evaluating the right-hand side 
def ydot(y, t): 
     return -y[0], -y[1], -y[2] 
 
# set the initial conditions 
y0 = np.zeros(3,dtype=float) 
y0[0] = 1. 
y0[1] = 2. 
y0[2] = 3. 
 
# set the integration limits and intervals for obtaining the solution 
a = 0. 
b = 11. 
tspan = np. arange (a, b, 0.2) 
 
#  call odeint to integrate the equations 
y = odeint(ydot,y0,tspan) 
 
# print the solution 
print(tspan, y) 
 
# plot the solution 
plt . plot(tspan, y) 
plt .show() 
 

Examples with multiple parameters passed to the function are shown on pages 23 and 24. If your 
system is stiff (the eigenvalues of the linearized system are significantly different) the integration 
may taking an interminable amount of time. With MATLAB you had to use ode15s, which is 
designed for stiff systems. With Python, though, the odeint is apparently a compiled program, 
and it runs very fast so this usually won’t be a problem.  

 

 
Figure F.5. Plot of Solution of Three ODEs 
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Differential-Algebraic Equations 
 
Some problems may have ordinary differential equations and algebraic equations, too. There are 
add-ons to Python that will do this. See, for example, Assimulo at 
https://pypi.python.org/pypi/Assimulo. 
 
Checklist for Using ‘odeint’  
 
When using ‘odeint’, your function for the right-hand side must meet these conditions: 
 

• The name in the calling command must be the same as the function name.   
• The variable tspan (or whatever it is called) must have at least two values. 
• The number of entries in the vector for the initial conditions must be the same as the 

number of right-hand sides calculated in the function. 
• The number of right-hand sides computed has to be equal to the number of differential 

equations. They are written in the return statement, with commas between them. 
Alternatively, the calculations can be put into a vector and the return statement can 
refer to the vector. 

• Variables can be used in the function. Then can be part of a vector of numbers, or specific 
entries and are listed as arguments in the def function. 

• The function will be called many times by the odeint function.  However, you only have to 
check the calculation once.  Check the function by giving it t and all the y(i); compute 
what you expect the right-hand sides to be and see that the computer gives those values.  
This is the only way to ensure that Python is solving the problem you want solved. 

 
F.9. PLOTTING  
 
To plot in Python you need to have imported matplotlib, as discussed above. Many options are 
available at http://matplotlib.org/gallery.html. 
 
Simple Plots 
 
 import numpy as np 
 import pylab as plt 
  
 def f(x): 
     return 2. + 3.*x + 0.5*x*x 
  
 # create the data 
 x = np. linspace (0, 4, 50) 
 y = f(x) 
 
 # plotting 
 plt . plot (x,y,’o-g’) 
 plt . xlabel ('x') 
 plt . ylabel ('y') 
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 plt . title ('Test Plot') 
 plt . show () 
 plt.savefig ('Figure_F6.png')   
 

 
Figure F.6. Simple Plot 

 
In the call to plot, the ‘o-g’ means plot the data with a circle, use a line between data points, and 
color it green. The plot appears on the screen. Press the image below the figure: 
 

 and you can save the figure to your computer.  
 
More Complicated Plots 
Possible symbols are (there are others): 
+ plus  ^ triangle (up) 
o  circle  v triangle (down) 
* star  > triangle (right) 
. point  < triangle (left) 
x cross  p pentagram 
s square h hexagram 
   none  no marker (default) 
 
The colors are in the default order for multiple plots (Pylab cycles through the first 5), but white 
is not used.  
 Colors Line types       
 b blue – ___ solid 
 g green _ _ dashed  
 r red : dotted 
 c cyan _. dashdot 
 m magenta  
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 y yellow     Line width 
 k black     lw = 2, etc. 
 w  white 
 
For a vector x with n entries, and a vector y with n entries, plot them in one of four ways:  

1. plt(x,y)        2. plt.loglog(x,y)      3. plt.semilogx(x,y)      4. plt.semilogy(x,y)  
 
To plot more than one variable:   
 
 plt . plot (x,y1,'o-g',x,y2,'x-r’) # if the y1 and y2 are known at the same values of x
 plt(x1,y1,x2,y2)       # if y1 is known at x1 and y2 is known at x2 

 
You can also issue two plot commands, one for each line (y1 and y2), so that the line width can 
be different for the two lines.  
 
Limit the axes: 

 
v = [0., 1., 0., 1.5] 
plt . axis(v) 
 

Add a legend: 
 

plt . plot (tspan, y, label='First curve') 
plt . legend(loc='best') 

  
Add a grid with plt.grid(). 
 
Plot only one column of a matrix, here the second row:    
 
 plt.plot (x,mat[1,:],'o-g') 
 plt.show() 
 
Multiple plots 

 
The command: subplot(2,1,1) says there will be two plots and the next plot command will be 
shown in the top half of the window. For the second figure, say subplot(2,1,2) and the next plot 
will be in below the first one.   
 
 >>>plt.subplot(2,1,1) 
 >>>plt.plot (x,y,'o-g') 
 >>>plt.subplot(2,1,2) 
 >>>plt. plot (x,y2,'x-r') 
 >>>plt.show() 



Appendix F – Hints to using Python, Copyright, Bruce A. Finlayson, 2017  52 

 
 

Figure B.7. Multiple Plots 
 
The numbering system says that there are 2 rows, 1 figure across, and the last number refers to 
the plots in the order they are defined. If you want four figures, two in the top row, then use 
subplot(2,2,1), subplot(2,2,2), subplot(2,2,3), subplot(2,2,4). The first two numbers say that 
there will be 2 x 2 plots. The last number represents the plot as defined in order.  
 
Bold, Italics, and Subscripts 
 
Other options are to change the fontstyle, fontsize, fontweight, linewidth, and Greek letters. 
 

plt . xlabel ('t', fontstyle='italic',fontsize=24) 
plt . ylabel ('y', fontweight='bold') 
plt . plot (tspan, y, linewidth = 2) 
 

To add a subscript use plt . title(r'$Q_1$') to make Q1.  
To add a superscript use plt . title(r'$Q^1$') to make Q1.  
To use Greek letters use 

 
plt . title(r'$\alpha$') 

 
The Greek letters are (These are TEX commands.) 

  α \ alpha       Γ \ Gamma  ∞ \ infty 
 β \ beta       Δ \ Delta  ≥ \ geq 
 γ      \ gamma       Θ \ Theta   ≤ \ leq    
 . .            . .            ∂ \ partial  
    . . . .  ± \ pm 
 ω \ omega Ω       \ Omega  \ Re 
       \ Im  
 
Additional options can be found at 
http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.text.  



Introduction to Chemical Engineering Computing, Appendix F – Copyright, Bruce A. Finlayson, 2017 53  

Contour Plots 
 
The following example comes from  
http://matplotlib.org/examples/pylab_examples/contour_demo.html 
 

import numpy as np 
import matplotlib.pyplot as plt 
import matplotlib.mlab as mlab  #MATLAB compatibility command 
 
plt.rcParams['xtick.direction'] = 'out' 
plt.rcParams['ytick.direction'] = 'out' 
 
delta = 0.025 
x = np.arange(-3.0, 3.0, delta) # sets the x-values 
y = np.arange(-2.0, 2.0, delta) # sets the y-values 
X, Y = np.meshgrid(x, y) # MATLAB command for generating the grid 
Z1 = mlab.bivariate_normal(X, Y, 1.0, 1.0, 0.0, 0.0) 
Z2 = mlab.bivariate_normal(X, Y, 1.5, 0.5, 1, 1) 
# difference of Gaussians 
Z = 10.0 * (Z2 - Z1) 
plt.figure() 
CS = plt.contour(X, Y, Z) 
plt.clabel(CS, inline=1, fontsize=10) 
plt.title('Simplest default with labels') 
plt . show ( ) 
 

 
Figure F.8. Contour Plot of 2D Function 
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3D plots 
 
To plot a function , create an  grid (rectangular), evaluate the function at each grid 
point, and plot.  The program to generate Figure F.9 is: 
 

import numpy as np 
import matplotlib.pyplot as plt 
import matplotlib.mlab as mlab 
import mpl_toolkits.mplot3d.axes3d as p3 # note the new import command 
 
delta = 0.025 
x = np.arange(-2.0, 2.0, delta) #create the x-grid from -2 to 2, increment 0.025 
y = np.arange(-2.0, 2.0, delta) #create the y-grid from -2 to 2, increment 0.025 
X, Y = np.meshgrid(x, y) 
Z = X*X + Y*Y                # evaluate the function 
fig = plt.figure() 
ax = p3.Axes3D(fig) 
ax.plot_surface(X, Y, Z) 
ax.set_xlabel('X') 
ax.set_ylabel('Y') 
ax.set_zlabel('Z') 
plt.show() 

 
Addition information can be found at  
https://scipy.github.io/old-wiki/pages/Cookbook/Matplotlib/mplot3D.html 
 

 
  

Figure F.9. 3D Plot of 2D Function using Python 
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F.10. PYTHON HELP 
 
For detailed information and a complete list of all commands in the SciPy file, go to 
https://docs.python.org/3/library/index.html. You can also get the latest (and earlier) User Guides 
and Reference Guides for Numpy and Scipy at https://docs.scipy.org/doc/ : numpy-user-
1.11.0.pdf and scipy-ref-0.18.1.pdf. 
 
If you want to see what modules you can import, go to the terminal window and say 
help(‘modules’). If you want to see what scipy contains, import scipy and say help(scipy). To see 
the details in the math section, go to the console and say print(dir(math)).  
 
A source with scientific examples is Introduction to Python for Computational Science and 
Engineering, by Hans Fangohr of the University of Southhampton, available as a pdf from 
https://www.southampton.ac.uk/~fangohr/training/python/pdfs/Python-for-Computational-
Science-and-Engineering.pdf 
 
Additional useful websites include: 
http://docs.python.org/2/tutorial 
http://matplotlib.org/api/pyplot_summary.html 
http://matplotlib.org/gallery.html 
http://www.scipy.org/NumPy_for_Matlab_Users 
 
There are also specialized programs submitted by others. See them at the Python Package Index: 
http://pypi.python.org/pypi. These require a compiler for another language and are not treated 
here, but they include methods to solve boundary value problems and partial differential 
equations (like in Chapter 9). If you want to do serious numerical analysis using Python, these 
programs should be considered. Modules there include methods using the finite element method, 
methods for problems with strong convection, spectral methods, and collocation methods. 
 
F.11. APPLICATIONS OF PYTHON 
 
 There are many chemical engineering examples in the book that can use Python.  
 

• Solving a single nonlinear equation, Ch. 2, p. 15, 16-20; Ch. 3, p. 34-35, Ch. 4., p. 53- 
  56.  
• Plotting, Ch. 2, p. 19. 
• Multiple equations, few unknowns, Chapter 4, p. 58-59. 
 

The Python programs applied to these problems are in the document Introduction to Chemical 
Engineering Computing; Extension to Python.pdf 
 


