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 If two immiscible fluids are flowing at the same velocity, and one contains a 
chemical and the other doesn’t, then the diffusion across the interface is governed 
by 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This is the same equation governing diffusion in a slab, with 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t = z /u . The solution for 
x > 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The solution for x < 0 is 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Figure 1. Diffusion across interface 

  The  thickness of  the diffusion  layer  is  taken as  the distance over which  the 
concentration  falls  from  0.5  to  0.01  (2%  criterion).  This  happens  when  the  
complementary error function is 0.01/0.5 = 0.02, or at an argument of η=1.645. 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This solution obviously cannot be used once the diffusion thickness reaches one of 
the walls. This is the thickness that the fluid diffuses from one fluid to another in a 
distance  z  downstream.  An  approximate  solution  to  this  problem  for  x  >  0  is 
(Finlayson, 1972, p. 45) 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 Either  of  these  functions  can  be  used  to  estimate  the  diffusion  thickness 
above  and  below  the  dividing  streamline  under  the  stated  assumptions.  Other 
numerical experience has shown that these assumptions are quite good in realistic 
cases. In the case of albumin and creatinine (Problems 10.27 and 11.28), in a length 
of 2 cm with a velocity of 2 mm/sec,  the creatinine diffusion  length  (D = 9.2 10‐10 
m2/s) was 315 µm, but the albumin diffusion length (D = 6.7 10‐11 m2/s) was 85 µm. 
The microfluidic device thus could provide one stream that had creatinine but very 
little  albumin  in  it  provided  it  was  obtained  at  a  distance  δalbumin  away  from  the 
interface. 

Variance 
 
 An approximation to the variance can be derived analytically (see below). 
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In this formula, the characteristic distance is the total width of the T-sensor and the 
velocity is the inlet average velocity.  It is plotted below on the composite graphs.  For 
comparison, a finite difference solution was used.  For a flat velocity profile, the 
approximate solution  and finite difference solution for 20 and 40 points superimpose in 
Figure 2.  When the velocity profile is quadratic (for fully developed flow between two 
flat plates, but not derived here) the variance is slightly smaller. 
 



 
 

Figure 2. Variance for T-sensor 
o – finite difference results and approximate solution, flat velocity profile; triangle – 

finite difference results with quadratic velocity profile 
 
Approximate Solution 

 An approximate solution for diffusion in the T-sensor is developed using the 
Method of Weighted Residuals, as described by Finlayson [pp. 45-46, (1972) and pp. 
179-180, 190 (1980].  Finlayson, pp. 45-46, 1972) Notice that in Figure 1 the 
concentration at the midpoint remains at c = 0.5.  On the right of the mid-point, the 
concentration is initially zero, then a diffusion zone moves from the midpoint to the edge, 
and then the concentration increases.  Thus, we pose the following problem to represent 
this case.  Only the case of uniform velocity is done. 
 
The diffusion equation is solved on x = 0 to h (from the midpoint to the edge; thus h is 
the half-thickness). 
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With boundary conditions of c = 0.5 at x = 0 and zero flux at x = h, and initial conditions 
of c = 0, the problem is fully specified.  It is made non-dimensional using the variables 
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c(0, z") = 0.5, c(x ',0) = 0, ∂c / ∂x '(1, z") = 0  



 
For the first part of the time, the concentration is zero almost everywhere with a 
concentration increase at x = 0 to c = 0.5.  Then a thin diffusion layer grows out towards 
the far wall.  During this time, the approximations solution is taken as 
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0.5 * (1− aη)2 ,η < 1 / a
0,η ≥ 1 / a
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This function is substituted into the differential equation to form the residual.  In the 
Galerkin method the residual is made orthogonal to the trial function, which in this case 
is the derivative of the function with respect to the unknown parameter, a.  This is the 
same procedure that is used in the Galerkin finite element method, except that the trial 
function and weighting function are not finite elements here.  Solving for a gives a2 = 
2/5.   This solution holds until the diffusion front meets the wall, which is z" ≤ 0.1.   
Calculating the variance gives 
 
σ 2 = 0.25 1−1.476 z"( ), z" ≤ 0.1  
 
At z" = 0.1 the variance is 0.133.  After this time another form of the solution is used. 
 
c = 0.5 + d(z")(x '2− 2x ')  
 
The initial condition is d(0.1) = 0.5 to make the start of this solution agree with the end of 
the previous one.  Substituting this formula into the differential equation forms the 
residual.  In the Galerkin method this time the weighting function is  
 
(x '2− 2x ')  
 
 and the solution for d is 
 
d(z") = 0.642exp(−2.5z")  
 
The variance is 
 
σ 2 = 0.220exp(−5z"), z" > 0.1  
 
In these formulas the distance is the half-thickness and the velocity is the velocity out.  In 
the figures shown above the total thickness is used and the velocity is the average 
velocity in, which is half as big.  Thus, the formula for z" is multiplied by 22 and divided 
by 2, giving the variance as shown above. 
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