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Abstract

An analytic solution is derived for fully developed flow of two immiscible fluids
between two flat plates when the fluids have arbitrary viscosity ratios and arbitrary
flow rate ratios. This generalizes the solution in Bird, et al.! when the two fluids take
up exactly the same space (i.e. the thickness of each fluid is one-half the total
thickness). This solution is useful, for example, in certain microfluidic devices when
two fluids flow in laminar contact; knowing the position of the dividing streamline is
critically important to accurate modeling of diffusion across the interface. Since
diffusion is often slow in comparison to the channel transit time, an approximate
expression is provided to identify the limits of diffusion about the dividing
streamline. Thus, it is possible to obtain a priori a good estimate of the
concentration band as the fluids move down the device.

1. Analytical Solution

Fully developed flow of two immiscible fluids between two flat plates is solved in
Bird, et al.! when the two fluids take up exactly the same space (i.e. the thickness of
each fluid is one-half the total thickness). That solution is generalized here to allow
any fraction, which ultimately will depend upon the flow rate ratio. The notation
follows that of Bird, et al.! and the domain is illustrated in Figure 1. Let the total
distance between the two flat plates be H, and the fraction filled with the lower fluid
(I) be £ The domain stretches from x = -f H to x = (1-f) H, i.e. the interface is at x = 0.
The viscosities of the fluids are u: and uz, and the flow rates are Q1 and Q.
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Figure 1. Flow of two immiscible fluids between parallel plates




The stress profiles are

The constant Ci is the same in both fluids since the stresses are the same at the
interface, x = 0. For Newtonian fluids we have
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The boundary conditions require
vi(=fH)=0, v,[1-f)H]=0

Applying these conditions to the velocities and solving for €1 and C> gives
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The flow rates are
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One can specify the fraction, f, and calculate the ratio of flow rates directly. When f=
0.5 it gives the solution in Bird, et al. Alternatively, the flow rate ratio, R = Q1/Q>, can
be specified, and the value of f is determined to meet this ratio. When the two
viscosities are equal, this should give the equation for a fully developed flow
between two parallel plates, which it does. A MATLAB programs is used to solve for
f when given R = Q1/Q:.

While this solution is for immiscible fluids, it may be a good approximation for
miscible fluids in a microfluidic channel when the Reynolds number is small, which
it usually is, since then no recirculation or instabilities will be present. One relevant
situation is the laminar diffusion interface, which is established when two fluids of
different chemical compositions are brought into laminar contact. Since they have



different concentrations, diffusion takes place perpendicular to the interface as the
fluids move down the channel. While the complete solution to the problem involves
solving the convective diffusion equation, and including the possible effect of
concentration on viscosity, there are situations in which an approximation is
feasible. If one fluid contains a substance that increases its viscosity relative to the
other fluid, but does not diffuse appreciably, then the viscosities of both fluids
remain essentially constant as they move down the channel. Other chemicals,
though, may diffusion more rapidly. For example,? if one fluid is serum and the other
is water, one fluid (serum) contains proteins (albumin representing the most
concentrated among them), that diffuses slowly, and metabolites (creatinine being
one of many), which diffuses more rapidly. The proteins affect the viscosity, but the
creatinine hardly does. In order to make use of such a channel to separate
metabolites from proteins, one would like to know how far the albumin diffuses
sideways as the flow proceeds down the channel, given the flow rates for serum and
water. This modeling capability would then permit identification of flow rates for
which the ratio of metabolite to protein is particularly high. This is still an
approximation, since there is some axial diffusion, but it is a good approximation
and can give guidance in the design and operation of devices.
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Figure 2. Diffusion problem around dividing streamline

Thus, consider the following problem for diffusion about the dividing streamline at x
= f, as sketched in Figure 2. Now the coordinate x is taken from 0 to H and the
dividing streamline is at x = fH.

dc d*c dc
v(f)—=D—,—(x%0,27)=0
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The velocity is the velocity at the dividing streamline; this assumption can be
removed by using a numerical solution. With this assumption, the solution centered
onx=fHis
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The thickness of the diffusion layer is taken as the distance over which the
concentration falls from 0.5 to 0.01 (2% criterion). This happens when the
complementary error function is 0.01/0.5 = 0.02, or at an argument of 1=1.645.
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This solution obviously cannot be used once the diffusion thickness reaches one of
the walls. This is the thickness that the fluid diffuses from one fluid to another in a
distance z downstream. An approximate solution to this problem is3
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Either of these functions can be used to estimate the diffusion thickness above and
below the dividing streamline under the stated assumptions. Other numerical
experience has shown that these assumptions are quite good in realistic cases. In the
case of albumin and creatinine, in a length of 2 cm with a velocity of 2 mm/sec, the
creatinine diffusion length (D = 9.2 10-1© m2/s) was 315 wm, but the albumin
diffusion length (D = 6.7 10-11 m2/s) was 85 um. The microfluidic device thus
provided one stream that had very little albumin in it provided it was obtained at a
distance fH + 6 above the bottom.

2. Numerical Results

Figure 3 shows the dimensionless velocity profiles when the flow rate ratios vary
from 0.2 to 5 and the viscosity ratios is 5. The coordinate x is dimensionless, scaled
by the height, H, with the dividing streamline at x = 0. The velocity is scaled such
that ApH?/2L = 1. As expected, when the viscosities are different, the slopes of the
velocity profiles are different at the dividing streamline. Of more interest is the
difference between the flow rate ratios and the physical location of the actual
streamline. Figure 4 shows the difference between the f predicted by the analysis
and the value of f that would be predicted based upon the ratio of flow rates,
Q1/(Q1+Q2). As can be seen, there is considerable difference in those values when
the flow rate ratio is small, regardless of the viscosity ratio, up to 100% difference in
some cases. Thus, the ratio of flow rates does not give a good estimate of the
location of the dividing streamline.

Consider next a numerical solution of the diffusion problem given above with v(f)
replaced by the actual velocity, scaled so that the streamline velocity is 2 mm/sec.
The finite difference method* is used to solve the convective diffusion equation
when the height is 380 um, the diffusivities are as given, the viscosity ratio is 5 and



the flow ratio is 1.0. In this case the f = 0.5735. Figure 5 shows the numerical
solution at the exit using x scaled by H and with the dividing streamline at x = f. The
velocity profile has a dramatic effect on the rapidly diffusing species (creatinine) but
almost no effect on the albumin because it diffuses so slowly. If one takes the
diffusion layer as the distance between the streamline value and the point where ¢ =
0.01 or 0.99, the diffusion layer for albumin is 85 wm on one side and 95 um on the
other side. These numbers are comparable to the estimates given above but show
the effect of the velocity profile on each side of the dividing streamline.

Simulations for two-dimensional and three-dimensional configurations, including
entry and exit geometries, are available elsewhere.>

Figure 3. Velocity profile for two immiscible fluids flow when p1/pn 2=5; all
curves are for the same pressure drop per length



Figure 4. Fraction of the height showing location of dividing streamline; solid
line is the ratio of flow rates, Q1/(Q1+Q-)



Figure 5. Numerical solution at the exit; viscosity ratio = 5, flow rate ratio = 1;
(a, b) creatinine with a velocity profile (a) and constant velocity (b);
(c, d) albumin with a velocity profile and constant velocity

3. Conclusions

An analytical solution is derived for the flow of two immiscible fluids between two
flat plates. It is valid for any ratio of viscosities and any ratio of flow rates, thus
generalizing the results of Bird, et al.l When combined with an analytical solution of
diffusion in the transverse direction, it can be used to estimate the thickness of
diffusion layers when the two fluids have different chemical compositions.
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