
CHAPTER

TWELVE
THE NAVIER-STOKES EQUATION

Numerical methods have now advanced to the stage whereby a wide
variety of phenomona can be simulated that in the past could only be studied
experimentally. fluid mechanics has traditionally been aivided into groups such
as laminar or turbulent flow, while laminar flow has bee~ subdivided into slow
flow situations (Stokes flow) and high speed situations (leading to boundary
layers, which require special boundary layer methods). Stokes flow applies for
zero Reynolds numbers; in this situation, analytic solutions can occasionally be
obtained. As the Reynolds number increases, however, numerical solutions are
required. Boundary layer methods are useful at high speeds (large Reynolds
numbers) when a thin boundary layer develops; in a few situations analytic
solutions are possible. Numerical methods can be used to bridge the gap between
a Reynolds number ofzero and a large Reynolds number. In addition, numerical
methods allow the solution ofcases with more complicated boundary conditions
than can usually be handled analytically, even for a zero Reynolds number. As
the Reynolds number increases to the point that boundary layer methods are
applicable, the numerical method must use appropriate mesh refinement in the
boundary layer or change to a boundary layer method. We can regard the tools
available to solve the Navier-Stokes equation for laminar flow as essentially well
developed. Turbulent flow is modeled using equations that have their parameters
determined by experiment. Usually these equations are not fundamental ones, in
that they are not derivable from first principles, but they are useful nonetheless.
It is possible to directly simulate turbulence, but the mesh must be very small and
the calculations are time-consuming and thus very expensive. In this book only
laminar flows are discussed. In this chapter, we will study both finite element
methods and finite difference methods for solving the Navier-Stokes equation.

12.1. Equations

The Navier-Stokes equation and the energy equation are listed in Table
12.1. A few assumptions have been made:
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Table 12.1. Equations

Navier-Stokes Equations:

~ T
P di + P u • V u =P f - Vp + V • h.l.(Vu + Vu )]

Energy Equation:

Navier-Stokes Equations in Cartesian Coordinates (2D):

Energy Equation in Cartesian Coordinates (2D):

1. Newton's law of motion
2. Law of conservation of energy
3. Incompressible fluid
4. Continuum
5. Newtonian fluid

No two-dimensional or three-dimensional experiment shouldbeused to test these
assumptions; these assumptions are either axioms or can be tested with simple
experiments. Newton's law and the law of conservation of energy are axioms,
which we accept unless relativistic effects are important. The incompressibility
ofafluid can be tested by measurement or by looking up acompressibility values
in a table. Indeed, if desired, simulations can be done for compressible fluids.
Whether or not a fluid is a continuum can be decided based on kinetic theory and
the perfect gas law. The fifth assumption, aNewtonian fluid, is an important one.
We can measure a fluid's viscosity in a viscometer and determine if the shear
stress is directly proportional to the shear rate and ifelastic effects are absent. If
so, the fluid is Newtonian and it will be discussed in this chapter; if not, it will
be discussed in Chapter 13.

Let us further simplify the equations by also assuming the following:
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6. Two-dimensional flow
7. Laminar flow

The Navier-Stokes equation is written in Cartesian coordinates in Table 12.1. It
is important to do an experiment (or to read literature where experimental
information is reported) to determine whether or not the flow is two-dimensional
and laminar. If the flow is two-dimensional and laminar, then it is easier, faster,
and cheaper to solve the Navier-Stokes equation numerically than it is to measure
some aspect of the flow. This statement could not have been made twenty years
ago, but it proves true today. The most important part of any model (or
experiment) is how the system interacts with its surroundings, i.e., the boundary
conditions. Thus an experiment may be necessary to show that the boundary
conditions of the theory are appropriate or that an important phenomenon is not
left out. On the other hand, calculations can be used to assess the validity of
assumptions made in interpreting the experimental reSUlts.

12.2. Finite Element Methods for Steady-State Problems

Here we concentrate on two-dimensional, laminar flows. A finite
elementmethodcan be applied to the Navier-Stokes equation in avariety ofways:

1. Primitive variables (velocity and pressure)
2. Primitive variables (velocity) with pressure from a penalty method
3. Stream function-vorticity

In the first and second cases, the velocity variables are expanded in a series and
the decision between the two cases is essentially an economic one (for Newtonian
fluids). In the third case, the primary variables are derivatives or integrals of
velocity; sometimes the boundary conditions are difficult to specify because the
variable of interest is not a physical quantity. Fmite element methods applied to the
Navier-Stokes equation are described in detail in a book by Cuvelier, et at. [1986].

Let us first consider the case when both velocity and pressure are
expanded in a series:

NU NU NP

u= rUj Ni (x,y), v= rVi Ni (x,y), P= rPiNi' (x,y).
i=l i=l i-l

(12.1)

Typically the velocity is expanded using an order that is one higher than the
pressure. Thus the velocity may be quadratic and the pressure linear or the
velocity may be linear and the pressure constant. The reason different degree
polynomials are used for pressure and velocity is so that the discrete equations
will have a solution for pressure when the velocity is completely specified
(Jackson and Cliffe [1981], Sani, etat. [1981]). The trial function may be defined
on triangles or quadrilaterals with constant, linear, or quadratic interpolation.
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Next we put the trial function into the Navier-Stokes and continuity
equations to define the residuals. To illustrate the procedure, let us use the
equations in non-dimensional form:

TRe u e V U= - V P + V e [~(V u + V u n,

with the boundary conditions

neu =Un or ne 'ten =-P+ ~ne[V u + V uT]en =~,

teu=~ or ne'tet=~n·[V u+VuT]et=ft ,

(12.4)

(12.7)

where the Reynolds number is pUsxJlls' withus' xs' and Ils as reference quantities
representing an average velocity, a certain characteristic length, and a viscosity.
Here the symbol Il refers to the actual viscosity (which may depend on tempera
ture) divided by the reference viscosity (a constant). The momentum residuals
aremultipledby 5u (which is NjexorNjey) and integrated'over the domain, giving

ReI}ue(ueVU)dV=- IvSueVPdV + IvSue{Ve[~(V u+VuT)]}dV. (12.5)

The viscous terms are integrated by parts and the divergence theorem is applied,
giving

IvSu e {V e [ ~ (V u + V UT )]}dV = Iv V • { Su e [ ~ (V u + V UT)]}dV 

Iv V Su : [ ~ (V u + V UT )]}dV
(12.6)

=Is {Su e [~(V u + V uT)]}e n dS - Iv V Su: [~(V u + V uT)]}dV

The pressure term is also integrated by parts and the divergence theorem is used:

IvSu e V p dV = Iv V e ( Su p )dV - Iv p V e Su dV

=Is n e Su p dS - Iv p V e Su dV

The complete result is then

ReI}u e (u e V u) dV = Iv p V • Su dV- Iv V Su : [ ~ (V u + V uT)]}dV -

-Isne Su p dS + Is {Su • [~(V u + V uT)]}e n dS (12.8)

We would not use this equation for anode on the boundary for which the velocity
must take a specified value. In the last two terms we separate the velocity into
its normal and tangential components.
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l)u=n-l)u+t-l)ut

Then we substitute the following into the last two tenns ofEq. (12.8):

-Isn- Su p dS + Is {Su - [ Jl (V u + V UT m- n dS =

Is n- Su [fn - n - Jl (V u + V UT) - n ] dS +

(12.9)

(12.12)

to give

ReI}uo(uOVU)dV= Iv PV oSudV- Iv VSU:[Jl(V u+VuT)]}dV+

+ J. no Su fn dS + J. toSu ft dS (12.11)
SI S2

The essential boundary conditions are velocities specified on the boundary. Ifthe
nonnal velocity is specified, then we do not use Eq. (12.11) for the nonnal
component of velocity or use the integral over St. Similar considerations apply
to the tangential component of velocity and the integral over~. Since the
essential boundary conditions must be applied to the nonnal and tangential
components of velocity, it is clearly useful to have the flow boundaries parallel
to the coordinate axes if an essential boundary condition is used for the nonnal
direction and a natural boundary condition is used in the tangential direction (and
vice versa). Finally, the continuity equation is multiplied by N/, the trial function
for pressure. The continuity equation is essentially an equation for pressure;
furthermore, this treatment gives the same result as is given by the variational
principle for slow flow.

IvSpV °udV=O

We then solve Eq. (12.11) and Eq. (12.12). These represent a set of nonlinear
algebraic equations that must be solved iteratively. The most common way that
these equations are solved is by using the Newton-Raphson method: the equations
are linearized about the current iterate and only the first-order terms are kept.
Denoting the iteration number with a superscript then gives

+Iv V Su : [Jl (V un+1 + V un+1,T )]}dV +

= - Re1Su ° (un ° V un) dV +J. no Su fn dS + J. toSu ft dS
v s. S2

(12.13)
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Figure 12.1. Quadrature Points to Use with the Penalty Method

An initial guess is supplied for uo, vo, and pO. Then Eq. (12.13) is applied once
to find u l , vI, and pi; this process is repeated until the successive iterates are
within some error tolerance (such as 10-6 when the calculations are done in
double precision). If the Reynolds number is small (e.g., 0.000(1), only one
iteration is necessary. If the Reynolds number is 100, usually only four or five
iterations are necessary ifa reasonable initial guess is provided. For this reason,
agood strategy is to always solve the case for Re =0 first and use that as the initial
guess for largerReynolds numbers. IftheReynolds number is 1000or more, then
the method may not converge at all, depending on the initial guess and the mesh.
One important point is that the pressure must be specified for at least one node,
since the differential (and algebraic) equations are indeterminant to within a
constant pressure.

In the penalty method, the incompressibility condition is handled as a
Lagrange multiplier. We write the pressure equation as

p=-AVoU, (12.14)

where A. is a large constant, chosen by the analyst. Then Eq. (12.13) becomes

Re Iv~u ° (u
n
+

1 ° V un) dV + Re Iv~u ° (un ° V u
n
+

1
) dV + AIv(V ° u

n
+

1
) V 0 ~u dV +

+Iv V ~u : [1.1. (V un+1 + V un+1
,T )]}dV +

= - Re r~u ° (un ° V un) dVJ. no ~u fn dS + J. to~u ft dS
Jv 5. 52

(12.15)
We thus have to solve for fewer unknowns since the only unknown values are the
velocities lli and Vi' Ifwe want the pressure, we can calculate it using Eq. (12.14),
althoughsmoothingisnecessary. However, thereisaproblem. ForaReynoldsnumber
ofzero ifwesolvetheproblemasstated, thesolutionconvergesto thezerosolution(i.e.,
zero velocity everywhere) as A. approaches infmity (which is the appropriate value for
the incompressibleproblem). Onepractical way aroundthis difficulty is to use inexact
numerical quadrature when evaluating the integrals. It is recommended by Hughes,
etal. [1979] that we use thequadrature as shown in Figure 12.1. This figure shows
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the types oftrial functions and the numberofGauss points that should be used for
terms multipled by J.1 and A.. The Newton-Raphson method is also applied to Eq.
(12.15) to obtain the equations to be solved iteratively. This completes the
formulation ofthe penalty method for the Navier-Stokes equation. Comparisons
of this method with the artificial compressibility method are available [Shih, et
al., 1989].

The primitive (u-p-v) method for the Navier-Stokes equation for an
incompressible fluid is unusual in that the equation for pressure (the continuity
equation) does not have the pressure variable in it. The continuity equation acts
like a constraint on the velocity field, leading to the restriction that the pressure
and velocities must be expanded indifferent trial functions. The stream function
vorticity method avoids this difficulty because the incompressibility constraint is
satisfied automatically. This method introduces another problem, however,
because on a solid surface there are two boundary conditions for stream function
and none for vorticity. This presents little difficulty for a finite element method.
When solving these equations, it is highly recommended that we solve them
together as a coupled system since the boundary conditions are not provided for
vorticity on all surfaces. It is possible to separate the problems, as is done with
finite difference methods, but experience suggests it is better not to do so
(Campion-Renson and Crochet [1978] and Stevens [1982]).

12.3. Finite Difference Methods

There are a variety of fmite difference methods for the Navier-Stokes
equation. Usually the various methods are designed to operate in an iterative
fashion, even for a zero Reynolds number. This is advantageous because large
computer memories are not necessary since no matrices are "inverted." How
ever, there are also disadvantages, as indicated below for each finite difference
method. In contrast, in finite element methods we obtain a large matrix problem
to be solved at each iteration; for Re =0 only one iteration is needed.

Thefrrstfmitedifferencemethod, whichoriginated with Chorin [1967],
allows the fluid to have a small value ofcompressibility. The chiefproblem with
the Navier-Stokes equation and the continuity equation is that the Navier-Stokes
equation is an equation for velocity and it includes thepressure gradient, while the
continuity equation is a constraint on the velocity but is in essence the equation
for pressure. In the artificial compressibility method a time derivative ofpressure
is added to the continuity equation, as shown in Table 12.2. The constant
parameterc2 is chosen to aid in convergence; the transient itselfdoes not have any
physical significance. This method is called the artificial compressibility method
because the pressure equation is the continuity equation for a compressible fluid
with an equation of state

p=c2 p.

(See the electronic text entitled "Compressibility Method.")

(12.16)
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Table 12.2. Finite Difference Methods for the Navier-Stokes Equations

Artificial Compressibility

i = - u • V u - V P + ~e V
2

u

~=-c2V .u

Unsteady-State

Stream Function-Vorticity

u • V l; - ~e V
2l; = O. V~ = -l;

The second finite difference method is a pseudo-steady-state method
that splits the Navier-Stokes equation into two parts, one involving the velocity
terms and one involving the pressure terms (see Table 12.2). Mter computing u*
using the first equation, we solve a Poisson equation for pressure. This equation
is derived by taking the divergence of the third equation and setting the
divergenceofun+1equal to zero. Mtersolving thePoissonequation for pressure,
we solve for un+1 using the third equation. The calculations are straightforward
for thevelocity terms. For the pressure terms wemust solve thePoisson equation.
Thiscanbedoneusingiterative techniques, such as Gauss-Seidel oroverrelaxation
methods. One boundary condition that can be used with this Poisson equation is
azero flux condition (Peyret andTaylor [p.162, 1983]),provided that thevelocity
u* satisfies the same boundary conditions as un+1. The actual boundary
condition is obtained by taking the normal component of the third equation but
the value ofu*drops out of the Poisson equation. What is being solved for in the
pseudo-steady-state method is not pressure but velocity, and this velocity is the
correct only at steady-state. The correct pressure can be obtained by taking the
divergence of the Navier-Stokes equation to give

V2P = - V • (u • V u ) •

1 2
n • V p = - n • ( u • V u) + Re n • V u.

(12.17)

(12.18)
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The divergence ofthe Laplacian ofthe velocity is the same as the Laplacian ofthe
divergence of the velocity, which is zero according to the continuity equation.
The finite difference equations are therefore

U*i+II2F ui+l/2.j = _11!' ,ui+312F ui-II2,j +
.1t ,+II2.J 2.1x

n n
1 ( n ~ ~ n )lli+l/2J+l -lli+l/2.i-l- 4' vi+l.j+l/2 + i.i+112 + i.i-l/2 + vi+l.i-l/2 By +

(

n 2n n n 2n n }1 11:+3/2 . - lli+II2' + lli-l/2' lli+l/2 '+1 - lli+l/2' + lli+l/2 '-I+_'.J .J .J+.J .J .J
Re.1x2 .1l

V*i.i+l/2- Vi,i+l/2 _ n (vi,i+312 - vi.i-l/2)
.1t - - vi.i+l/2 2.1y

1 ( n n n n ) vi'+I.i+l/2-vi-l.i+112- 4' lli+l/2.i + lli+l/2.i+l + lli-ll2.i + lli-l/2J+l 2& +

+ ..!... (vi+l.i+1I2 - 2vi'.i+l/2 + Vi-l.i+l/2 + vi.i+312 - vi,i+l/2 + vi,HI2)

Re.1x2 .1l'

n+l 2 n+l + n+l n+l 2 n+l + n+l_Pi_+l-".i....-_P....;;i':'-.i__Pi_-1-'"'.i Pi.i+l - Pi.J Pi.i-l+ - =
.1x

2 .1l

n+l * n+l n+l
lli+l/2.i - U i+II2,j =_ Pi+l.i - Pi.i

.1t .1x

(12.19)

(12.20)

(12.21)

(12.22)

V!,"!"1 1/2 - v*· . 1/21.J+ 1.J+ =
At

n+l n+l
Pi,i+l - Pi,i

.1y
(12.23)

Finite difference methods can also be applied to the stream function-vorticity
equations, which are usually solved iteratively.

12.4. Finite Element Methods for Unsteady-State Problems

Finite element methods are usually applied to steady-state problems by
solving the set of algebraic equations [Eq. (12.11)-(12.12)] using the Newton
Raphson method. Finite difference equations are usually solved using relaxation
or other iterativemethods, or a pseudo-unsteady-state method is used. New finite
element methods must be developed for the transient case. The first method
discussed below has been developed by Gresho and co-workers [1984]. It is a
classical finite element method, although several approximations are made to
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improve the efficiency. The second method employs the method ofcharacteris
tics to move material points and is in fact similar to some of the fmite difference
methods. Three other fmite element methods are briefly mentioned at the end
of this section. The next section incorporates the ideas of Taylor-Galerkin
methods.

Modified finite element method. For transient problems, we expand
the velocity and pressures as in Eq. (12.1), except that now the coefficients are
functions of time rather than constants. When these expansions are inserted into
the Navier-Stokes equation and the continuity equation, we obtain the following
set of differential-algebraic equations:

Mil+N(u)u+ K u+C P= f,

CTu= O.

(12.24)

(12.25)

The first term of equation (12.24) represents the mass ~atrix, which appears in
the finite element treatment of time derivatives. The second term represents the
inertial terms, the third term is the viscous term, and the'remaining terms come
from the pressure gradient and body forces. The second equation is a discrete
representation of the continuity equation. These equations are inconvenient to
solve because they have time derivatives for the velocities in the two velocity
equations, but no time derivative for pressure in the continuity equation. Thus
we derive a discrete Poisson equation for pressure in the manner used to derive
Eq. (12.17). We write the discrete Navier-Stokes equation as

C P+ Mu= f-N(u)u- K u.

We multiply this by M-I, giving

M""lCP + Ii = M""l [ f - N(u) u - K ul.

Next we multiply Eq. (12.27) by CT, giving

CTM""lCp + cT.u= CTM""l [f - N(u) u - K ul

and differentiate the continuity equation with respect to time. Thus

CTu=O

and the equation for pressure becomes

CTM""lCp = CTM""l [ f - N(u) u - K u l.

(12.26)

(12.27)

(12.28)

(12.29)

(12.30)

This is a discrete approximation ofEq. (12.17). To solve this equation we must
apply boundary conditions on the pressure, which should be the Neumann
conditions given in Eq. (12.18) [Greshoand Sani, 1987].

In order to solveEq. (12.24) usingEq. (12.30), we need an efficient way
to calculate M-I as well as to solve Eq. (12.30). The first method is an explicit
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method. Gresho, etal. [1984] use alumped massmatrix so that Mis diagonal and
its inverse is easy to fmd. Then, for further efficiency, they evaluate the
coefficient matrices using one-point quadrature; an hourglass correction is
needed for the diffusion terms to improve the results. Finally, they use the Euler
method to integrate Eq. (12.24) in time, with the pressure equation [Eq. (12.30)]
solved only occasionally. We note that the matrix problem in Eq. (12.30) need be
solved only once per problem since it does not change from time-step to time
step. Even so, thematrixproblem is a time-consuming and expensivecalculation;
the pressure does not change rapidly, so it is updated on a longer time-step than
the velocity. In order to do this, it is necessary for the initial approximation of
velocity to be solenoidal,

TC \10=0, (12.31)

so that the initial transients arising from Eq. (12.29) are not severe.
The algorithm is sufficiently important to be written in detail. First let

us look at the continuity equation, Eq. (12.25). We suppbse that we have N+M
number of velocity unknowns, with M of them specified on boundaries. We
separate the vector ofvelocity nodal values into two vectors, one of length N and
the other oflength M. The continuity equation can then be written in the form of
Figure 12.2. The first N equations can be written as

(12.32)

where the right-hand side is known. We call it g(t). Then Eq. (12.32) becomes

Tcll u= g(t)

and Eq. (12.29) becomes

T' dgcll u= dt.

(12.33)

(12.34)

N

M

T T
Cll C

l2

cII cT
22

u

=
o

o

N
.. ..

M

Figure 12.2. Matrix Form for the Continuity Equation
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We start with a velocity that satisfies the essentialboundary conditions (specified
velocities) and Eq. (12.33) at time zero. Then we solve for pressure using the
equation

n+l n
CTM"lCpn = CTM"l [f _ N(un) un - K un ]- g ;; g (12.35)

All terms on theright-hand side areknown sincegn+1isknownfrom the boundary
conditions. Eq. (12.35) is derived from Eq. (12.28) using Eq. (12.34). It is the
equivalent ofEq. (12.30) but with the boundary conditions taken into account.
There are two types ofboundary conditions. On the part of the boundary where
the velocity is specified, the boundary conditions are the Neumann conditions,
derived as the normal component ofEq. (12.24),

~=n.(f+~V2u -p~-pu.v u). (12.36)
I

On the rest of the boundary, the pressure is calculated from Eq. (12.4).

(12.37)

Finally, the velocity is updated to give

(12.38)

For efficiency in this version, the mass matrix is lumped in all occurrences. The
final algorithm is then (where ML represents a lumped mass matrix)

n+l n
CTMi:1Cpn = CTMi:1[f - N(un) un - K un] - g ;; g , (12.39)

(12.40)

This algorithm is a finite element version of the finite difference
method discussed in Section 12.3, based on the unsteady-state version listed in
Table 12.2. Ifa fmite element method were applied directly to the unsteady-state
equations as listed in Table 12.2, we would get the algorithm

~D+l _ uD
M & = f-N(UD)uD-K UD,

CTM"1 Cpn+l = 1.. cT~D+l
dt '

uD+1 ~D+l
M - =- Cpn+l

dt

Ifwe add Eq. (12.41) to Eq. (12.43), we get the momentum equation:

(12.41)

(12.42)

(12.43)
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Figure 12.3a. Finite Element Mesh for Flow Past a Cylinder

Figure 12.3b. Enlargement of the Finite Element Mesh for Flow Past a Cylinder
From Gresho, et al., [1984]; copyright 1984; reprinted by permission of

John Wiley & Sons, Ltd.

(12.44)

How are the finite element equations, Eq. (12.41 )-(12.44), related to the modified
finite element method as summarized in Eq. (12.35)-(12.38)? To see the relation,
we take a case where the velocity boundary conditions are constant in time; then
gn+l = gn in Eq. (12.35). We define a new variable, iin+1

, such that

-n+1 n

f - N(un) un - K un =M u 6~ u

Then Eq. (12.35) is written as

(12.45)

(12.46)

At the initial time, the equation cTun = 0 holds; this equation is then forced to be
true for subsequent times. Eq. (12.46) is equivalent to Eq. (12.42), except that the
result is called pn+l instead ofpn. Thus the final equations, Eq. (12.38) and Eq.
(12.44), are in reality the same; the method used by Gresho and co-workers
[Gresho and Chan, 1985] is the finite element analog to the finite difference
method listed as "Unsteady-State" in Table 12.2.

Gresho and co-workers [Gresho and Chan, 1985] have developed their
method further to allow larger time-steps. The algorithm represented by Eq.
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Figure 12.4. Streamlines During Vortex Shedding; Re = (a) 50, (b) 100, (c) 200,
(d) 400. From Gresho, et al., (1984]; copyright 1984; reprinted by

permission of John Wiley & Sons, Ltd.

(12.38) has a step-size that is limited by diffusion, i.e., L1t~ c Jl.1x2 for somevalue
of c. When the viscosity is small but non-zero, this limitation requires a very
small step-size. To improve on this, the semi-implicit method was adopted. We
merely replace the diffusion terms in Eq. (12.40) with an implicit version:

"+1 "
ML u ;; u + K u"+1 = _ cP" + f" _ N(u") u" .

(12.47)

(12.48)

The method can be improved even more if the mass matrix is not
lumped in the momentum equation. The pressure equation is easily and quickly
solved when the mass matrix is lumped, so we keep that approximation in the
pressure equation. Then Eq. (12.47)-(12.48) are replaced by

"+1 "
CTML1CP" = CTML1 [ f" - N(u") u" - K u" ] - g ;, g (12.49)

(12.50)

An additional viscosity term is added that is proportional to L1tuiUj.2; it is called
abalancing tensor diffusivity. The reason for using this term is closely connected
to the Taylor-Galerkin method, which is outlined in Section 12.5. Eq. (12.49)
(12.50) gives good results, too [Gresho and Chan, 1988].

The explicit method [Eq. (12.47)-(12.48)] has been applied to the
problem offlow past a cylinder at large Reynolds numbers. Themesh is as shown
in Figure 12.3 [Gresho,etal., 1984]. ForReynolds numbers above 50, the steady
state solution to this problem is unstable and an unsteady flow develops. Vortices
are shed behind the cylinder one after another with a frequency f. Atypical view
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Figure 12.5. Streamlines Near Cylinder, Re = 50, I1t = 't/16 for Successive Pictures
From Gresho, et al., [1984]; copyright 1984; reprinted by permission of

John Wiley & Sons, Ltd.

ofthe streamlines behind the cylinderis shown in Figure 12.4. For ope Reynolds
number, the successive streamlines are shown as a function oftime inFigure 12.5.
The frequency at which the vortices are shed is a convenient measure for
comparing experiments; this dimensionless frequency is called the Strouhal
number,

(12.51)

where Do is the upstream velocity of the fluid past a cylinder with diameter D.
This agrees reasonably well with experimental correlations (0.14 versus 0.12 for
a Reynolds number = 50). The calculations using the first algorithm discussed,
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Eq. (12.24)-(12.40), took about two hours on aCRAYcomputer. See also Kovacs
and Kawahara [1991] for additional applications.

Donea, et al. [1982] presented a fractional step finite element method
in which the momentum equation was split into two steps. The convective and
diffusive terms were used to calculate the velocity at the n+1/2-th time-step and
aPoisson equation for pressure was used to obtain the pressure at the n+I-th step.
Then thevelocity at then+I-th step wasobtained, including thepressure term. Similar
ideas for the Taylor-Galerkin method are described in detail in Section 12.5.

Method ofcharacteristicswithoperatorsplitting.Thesecondmethod
is one developed by Huffenus and Khaletzky [1984] that involves operator
splitting. They employ a method of characteristics to follow the movement of
fluid elements. Ifwe solve the hyperbolic equation

of of
dt+u~=o (12.52)

to move from time level n to time level n+I, then the solution at node i and time
level n+1 is the value of the function at F*, as illustrated in Figure 12.6.

Figure 12.6. Method of Characteristics to Go from n-th Tlffie level to n+l-th Time Level

Thus, when solving

we use

dM
Tt=V(M,t),

M* =Mj+l - Vtil,

(12.53)

(12.54)

where the velocity is constant during the time interval from time level n to time
level n+1. The method works as follows. We use the method of characteristics
to obtain u* and v* at each node (i.e., the velocity of the fluid at node i and time
level n+1). Then we solve

2 V-v*
VP="Al (12.55)

using the Neumann boundary conditions from the momentum equation. Finally,
we solve

(12.56)

to determine thevelocity at thenew time level. The stepsofthemethod are similar
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to those used in the unsteady-state fmite difference method listed in Table 12.2,
except that the convection terms are handled using the method ofcharacteristics,
Eq. (12.54), rather than in the standard way. Huffenus and Khaletzky [1984] use
triangular elements with quadratic velocities and linear pressures to solve the
driven cavity problem. Yang, et al. [1991] use a similarmethod for the convective
diffusion equation.

Compressible-fluid method. The third method, based on work by
Kawahara [1983], allows for density to depend on pressure so that the fluid is
effectively compressible (although the compressibility may be small). In this
way, the continuity equation is changed from adifferential equation constraint to
a time-dependent equation for pressure. After the compressible fluid finite
elementmethod is applied in space, the unsteady-stateproblem has three ordinary
differential equations for u, v, and p, which can be solved using a variety of
methods. Kawahara [1983] uses an explicit method; he also solves the problem
of vortex shedding behind a cylinder.

Stream function-vorticity method. The fourth method is a time
dependent applicationofthe streamfunction-vorticity method by Miyauchi, etal.
[1983]. In this case, the time-dependent vorticity equation is integrated using
either the Euler method or a Lax-Wendroffmethod in time.

Upstream method. The fmal method comes from work by Hughes, et
al. [1979]: a penalty method is used along with upstream evaluation of the
convection matrices. Lobatto quadrature is used, which in the lowest order is the
trapezoid rule and in the next highest order is Simpson's rule. This has the effect
of lumping the mass. When the steady-state equations are written as

C v +N(v)=F. (12.57)

then the transient method is as follows. From the n-th time level we know the
value ofvn and 3n. The algorithm is then

Vn+1= vn +(1-'Y)8o.
o -

Vn+1 = Vn+1'

(M + 'Y & C ) v~~~ =M Vn+1 + 'Y & [ F - N (V~+l)]'

80+1 = ( Vn+1 - Vn+1 ) I'Y & .

(12.58)

Apparently the equation is iterated until it converges (at each time-step). The
parameter 'Y is set as ~ 1/l for stability reasons. The penalty parameter takes
values similar to the parameter for a steady-state simulation. Since upstream
effects are included, the Reynolds number can be very large. One solution is
given for flow past a step in the boundary; starting from a steady-state solution
for a Reynolds number of 30, the flow rate is increased to an effective Reynolds
number of 107. No attempt is made to determine the influence of upstream
weighting on the type of solution, but the solution is "reasonable-looking," even
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if there is so much upstream diffusion that it is incorrect. Since real flows usually
become turbulent at such large Reynolds numbers, determining whether or not it
is an appropriate solution of the equations must await more detailed studies with
fmer meshes.

For unsteady flows it is also possible to move the mesh in some way.
Ramaswamy and Kawahara [1987] use a combined Lagrangian-Eulerian fmite
element method for treating time-dependent flows with free surfaces.
Gopalakrishnan [1988] moved the mesh using local kinematics.

The flux-correction method has also been applied to compressible
flow equations and the Navier-Stokes equation [LOhner, etal., 1987 and Thareja.
et aI., 1989].

12.5. The Taylor-Galerkin Method

The Taylor-Galerkin method can be applied to the unsteady-state
Navier-Stokes equation,

(aU) . TP dt + u· V u =P f - V p + v • [J.1 (V u+ V u »),

which must be solved together with the continuity equation,

V • u=o,.

As before, we expand the velocity in a Taylor series in time giving

n+l n au In A. eru In N-
U = u + dt UI.+ ar- 2'

This equation is rearranged to give

i In =u
n
+

1
~ un _~ ~; In

(12.60)

(12.61)

(12.62)

We evaluate the second time derivative from the unsteady-state Navier-Stokes
equation by using Cartesian tensor notation and transforming the final result into
vector notation to make it general. Let us consider only the convective term in
the Navier-Stokes equation:

(12.63)

or

(12.64)

We can also write this in conservative form as
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or
a~ a
dt = - ax; (Uj~)'

We differentiate Eq. (12.66) once with respect to time, giving

Then we insert the non-conservative form, Eq. (12.64), which gives

Finally, we write this in vector notation:

~U
-=V o[u(uoV u)]+V o[(uoV u)ul.ar-

The unsteady-state Navier-Stokes equation is then

(12.65)

(12.66)

(12.67)

(12.68)

(12.69)

(
Un+! _ un ) p At ~u In

p At +UoV u =pf-V P+V o[~(V u+V uT)]+T ar ,(12.70)

which becomes

P ~t
+ T {V 0 [ U( U 0 V u)] + V 0 [ ( U 0 V u) u ]}.

(12.71)

For us to see the effect of the additional terms, we should write the
equations in component notation. We use cylindrical geometry and take a case
with azimuthal symmetry. We use z for the axial coordinate and r for the radial
coordinate and also use the condition

ne=O

and allow no a-variation in the solution. The velocities are

ezo u =u and ero u =v.

The convective terms are given on the next page.

(12.72)

(12.73)
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The ez component of u • V u is v~ +u ~.

Theercomponentofu· V u is vi +u~.
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(12.74)

TheTaylor terms involve the dyadic u (u • V u) + (u • V u) u. Its components are

e~r 2 ( v
2 i + uv ~ ).

o.

(12.75)

(12.76)

I

We note that the dyadic is symmetric. Now a second-or~er dyadic can be written
in terms of its components (in this geometry) as

For the divergence. the components of V • A are

(12.77)

er

1 CJ ) CJ (Ar dr (r Aa +dz .->zz)'

lCJ CJ Aee
- ~ (r Arr) +~(Au)--·r or az r

(12.78)

For the Taylor terms, the components of V • [ u (u • VU) + (U • V U) u] are

ez ~ fr{ r[ v
2~ +u v ~+vui +u

2~]} + fz{ 2uv ~+2u2~}.
1 CJ {[ 2 dv dv ]} CJ { dv 2 dv 2 au au} (12.79)

er r dr r 2 v dr + 2 u v dz + dz U v dr + U dz + v dr + U v dz .

Let us next consider the case where the dyadic A represents a shear stress for a
Newtonian fluid. The components are

au (au dv) CJv v
'tzz =- 2 J.l. dz' 't,z = 'tzr =- J.l. dr + dz • 'trr =- 2J.l. dr' 'tee =- 2 J.l. r' (12.80)

By comparing Eq. (12.75)-(12.76) with Eq. (12.80) we can see that the Taylor teffilS
add viscous-like terms to the equations. In fact, we can write Eq. (12.75)-(12.76) as

A=T:V u (12.81)

and deduce the fourth-order dyadic T. The Taylor term can then be regarded as
an anisotropic viscous term.
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An alternative fonnulation of the Taylor-Oalerkin method for the
Navier-Stokes equation was given by Laval [1988]. She expresses the method
in tenns of operator splitting. First there is a convection step,

(
u*- un ) p&

P & + u • V u = 2 {V • [ un ( un • V un)] + V • [ ( un • V un) un ] }.

(12..82)

(12..83)

where b represents the inlet velocity. Then there is a viscous step,

u**- u* T
P 6t = P f + V • [IJ. (V u* + V u* )],

u** = bn+1 on boundaries with velocity specified.

The pressure is obtained by solving

V • u** 2 n+l
p & =-V P

Finally, un+I can be calculated:

(12.84)

(12.85)

(12.86)

un+1 _ u**
V Pn+l, and Vp 6t =- •..un+1 = 0, (12.87)

un+1 • n = bn+1 • n on boundaries where velocity is specified. (12.88)

Comparison ofEq. (12.82)-(12.88) with Eq. (12.41)-(12.43) shows that they are
the same, except that the convection and viscous step are separated into two steps
and the diffusion is evaluated at the predicted velocity u*. This means that the
method is similar toOresho's fonnulation when the samefinite elementdecisions
are made (Le., the same trial functions, decisions on lumping, etc.). In the two
step version, Eq. (12.82)-(12.88), methods optimized for each stepcould be used.
Other examples of similar methods are by Ramaswamy [1990], Hawken, et al.
[1990], and Pepper and Singer [1990].

For the compressible high speed flow equations, Lohner, et al. [1985]
used a two-step fonnulation of the Taylor-Oalerkin method that is similar to the
MacConnack and Lax-Wendroff methods. The two-step fonnulation proved
faster than the one-step fonnulation because the Jacobian was less complicated.
The compressible flow equations were without viscosity but artificial viscosity
was added proportional to the velocity gradients. Lohner, et al. also did adaptive
remeshing by using a criterion that the local error should be constant. The local
error was given by

(12.89)
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Thus they chose the mesh size so that

~ Iu Ii =constant. (12.90)

The norm was defmed as

(12.91)

and LOhner, et aI. [1985] used a finite element approximation to this norm. (See
also L6hner [1987]). Oden, et aI. [1986] treated the same equations, using
artificial viscosity and adaptive mesh refinement. For a group offour elements,
the center node could be moved or the elements could be subdivided to achieve
an equidistribution criterion based on the estimated error.
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